Axial resolution improvement by spectral data fusion in simultaneous dual-band optical coherence tomography

Author(s):  
Peter Cimalla ◽  
Maria Gaertner ◽  
Julia Walther ◽  
Edmund Koch
2008 ◽  
Vol 16 (4) ◽  
pp. 2469 ◽  
Author(s):  
Yu Chen ◽  
Aaron D. Aguirre ◽  
Pei-Lin Hsiung ◽  
Shu-Wei Huang ◽  
Hiroshi Mashimo ◽  
...  

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


2013 ◽  
Vol 54 (1) ◽  
pp. 746 ◽  
Author(s):  
Lili Ge ◽  
Yimin Yuan ◽  
Meixiao Shen ◽  
Aizhu Tao ◽  
Jianhua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document