infrared light
Recently Published Documents


TOTAL DOCUMENTS

3838
(FIVE YEARS 1416)

H-INDEX

112
(FIVE YEARS 28)

2022 ◽  
Vol 8 ◽  
Author(s):  
Takashi Kubo ◽  
Kosei Terada ◽  
Yasushi Ino ◽  
Yasutsugu Shiono ◽  
Shengxian Tu ◽  
...  

Recent advances in intravascular imaging techniques have made it possible to assess the culprit lesions of acute coronary syndrome (ACS) in the clinical setting. Intravascular ultrasound (IVUS) is the most commonly used intravascular imaging technique that provides cross-sectional images of coronary arteries. IVUS can assess plaque burden and vessel remodeling. Optical coherence tomography (OCT) is a high-resolution (10 μm) intravascular imaging technique that uses near-infrared light. OCT can identify key features of atheroma, such as lipid core and thin fibrous cap. Near-infrared spectroscopy (NIRS) can detect lipid composition by analyzing the near-infrared absorption properties of coronary plaques. NIRS provides a chemogram of the coronary artery wall, which allows for specific quantification of lipid accumulation. These intravascular imaging techniques can depict histological features of plaque rupture, plaque erosion, and calcified nodule in ACS culprit lesions. However, no single imaging technique is perfect and each has its respective strengths and limitations. In this review, we summarize the implications of combined use of multiple intravascular imaging techniques to assess the pathology of ACS and guide lesion-specific treatment.


2022 ◽  
Author(s):  
Gabriela Garcia ◽  
Tharanga Kariyawasam ◽  
Anton Lord ◽  
Cristiano Costa ◽  
Lana Chaves ◽  
...  

Abstract We describe the first application of the Near-infrared spectroscopy (NIRS) technique to detect Plasmodium falciparum and P. vivax malaria parasites through the skin of malaria positive and negative human subjects. NIRS is a rapid, non-invasive and reagent free technique which involves rapid interaction of a beam of light with a biological sample to produce diagnostic signatures in seconds. We used a handheld, miniaturized spectrometer to shine NIRS light on the ear, arm and finger of P. falciparum (n=7) and P. vivax (n=20) positive people and malaria negative individuals (n=33) in a malaria endemic setting in Brazil. Supervised machine learning algorithms for predicting the presence of malaria were applied to predict malaria infection status in independent individuals (n=12). Separate machine learning algorithms for differentiating P. falciparum from P. vivax infected subjects were developed using spectra from the arm and ear of P. falciparum and P. vivax (n=108) and the resultant model predicted infection in spectra of their fingers (n=54).NIRS non-invasively detected malaria positive and negative individuals that were excluded from the model with 100% sensitivity, 83% specificity and 92% accuracy (n=12) with spectra collected from the arm. Moreover, NIRS also correctly differentiated P. vivax from P. falciparum positive individuals with a predictive accuracy of 93% (n=54). These findings are promising but further work on a larger scale is needed to address several gaps in knowledge and establish the full capacity of NIRS as a non-invasive diagnostic tool for malaria. It is recommended that the tool is further evaluated in multiple epidemiological and demographic settings where other factors such as age, mixed infection and skin colour can be incorporated into predictive algorithms to produce more robust models for universal diagnosis of malaria.


Author(s):  
Jin-Yue Zeng ◽  
Xiao-Shuang Wang ◽  
Bo-Ru Xie ◽  
Qian-Ru Li ◽  
Xian-Zheng Zhang

2022 ◽  
Author(s):  
Yinming Shao ◽  
Aaron Sternbach ◽  
Brian Kim ◽  
Andrey Rikhter ◽  
Xinyi Xu ◽  
...  

Abstract Metals are canonical plasmonic media at infrared and optical wavelengths allowing one to guide and manipulate light at sub-diffractional length scales. A special form of optical waveguiding is offered by highly anisotropic crystals revealing different signs of the dielectric function along orthogonal directions. These latter types of media are classified as hyperbolic and many crystalline insulators, semiconductors and artificial metal-based metamaterials belong to that class. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. Yet this behavior remains elusive primarily because interband processes introduce extreme losses and arrest light propagation. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The unique electronic structure with touching energy bands at nodal points/lines suppresses losses and enables a hyperbolic regime at the telecommunications frequencies. The observed waveguiding in metallic ZrSiSe is a product of polaritonic hybridization between near-infrared light and long-lived nodal-line plasmons. By mapping the energy-momentum dispersion of the nodal-line hyperbolic modes in ZrSiSe we inquired into the role of additional screening associated with the surface states.


2022 ◽  
Author(s):  
Asuka Nakatani ◽  
Hoang Tuan Tong ◽  
Morio Matsumoto ◽  
Goichi Sakai ◽  
Takenobu Suzuki ◽  
...  

2022 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
Huan Zhang ◽  
Shouqing Liu

Graphene/MoS2 hybrid material was prepared by the hydrothermal method. The hybrid material was characterized by X-ray diffraction spectrum, Raman spectra, transmission electron microscope and UV-vis-NIRS. It was used as a near-infrared photocatalyst to catalyze and degrade Rhodamine B (RhB). The results showed that when the concentration of the RhB solution was 50.0 mg·L–1, the pH value of the solution was 7, the volume of the solution was 50.0 mL, the amount of G/MoS2 catalyst was 0.05 g and near-infrared radiation was carried out for 3 h, the degradation rate of RhB in the 50 mL solution reached 96.5%. When MoS2 was used as the photocatalyst, the degradation rate of RhB was only 75.5%. After 5 times of recycling, the catalytic efficiency of the hybrid photocatalyst was still more than 90%, indicating that the catalyst is very stable.


Author(s):  
Johan F. Triana ◽  
Felipe Herrera

Abstract Controlling the quantum field statistics of confined light is a long-standing goal in integrated photonics. We show that by coupling molecular vibrations with a confined mid-infrared cavity vacuum, the photocount and quadrature field statistics of the cavity field can be reversibly manipulated over sub-picosecond timescales. The mechanism involves changing the cavity resonance frequency through a modulation of the dielectric response of the cavity materials using femtosecond UV pulses. For a single anharmonic molecular vibration in an infrared cavity under ultrastrong coupling conditions, the pulsed modulation of the cavity frequency can adiabatically produce mid- infrared light that is simultaneously sub-Poissonian and quadrature squeezed, depending on the dipolar behavior of the vibrational mode. For a vibration-cavity system in strong coupling, non-adiabatic polariton excitations can be produced after the frequency modulation pulse is over, when the system is initially prepared in the lower polariton state. We propose design principles for the generation of mid-infrared quantum light by analyzing the dependence of the cavity field statistics on the shape of the electric dipole function of the molecule, the cavity detuning at the modulation peak and the anharmonicity of the Morse potential. Feasible experimental implementations of the modulation scheme are suggested. This work paves the way for the development of molecule-based mid-infrared quantum optical devices at room temperature.


Sign in / Sign up

Export Citation Format

Share Document