The Investigation of the Effect of Changing the Height of Optical Elements on the Focal Spot Size Using High-Performance Computer Systems

Author(s):  
Dmitry Savelyev
2021 ◽  
Vol 2086 (1) ◽  
pp. 012166
Author(s):  
D A Savelyev

Abstract The diffraction of vortex laser beams with circular polarization by ring gratings with the variable height was investigated in this paper. Modelling of near zone diffraction is numerically investigated by the finite difference time domain (FDTD) method. The changes in the length size of the light needle and focal spot size are shown depending on the type of the ring grating.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Svetlana N. Khonina ◽  
Andrey V. Ustinov

We analyze the symmetry properties of the focal plane distribution when light is focused with an element characterized by a periodic angular dependent phase, sin (mφ) or cos (mφ). The majority of wave aberrations can be described using the said phase function. The focal distribution is analytically shown to be a real function at odd values of m, which provides a simple technique for generating designed wave aberrations by means of binary diffractive optical elements. Such a possibility may prove useful in tight focusing, as the presence of definite wave aberrations allows the focal spot size to be decreased. The analytical computations are illustrated by the numerical simulation, which shows that by varying the radial parameters the focal spot configuration can be varied, whereas the central part symmetry is mainly determined by the parity of m: for even the symmetry order is 2m and for odd is m.


2020 ◽  
Vol 78 (4) ◽  
pp. 479-486
Author(s):  
Marcela Tatiana Fernandes Beserra ◽  
◽  
Ricardo Tadeu Lopes ◽  
Davi Ferreira de Oliveira ◽  
Claudio Carvalho Conti ◽  
...  

2011 ◽  
Vol 29 (3) ◽  
pp. 345-351 ◽  
Author(s):  
C.M. Brenner ◽  
J.S. Green ◽  
A.P.L. Robinson ◽  
D.C. Carroll ◽  
B. Dromey ◽  
...  

AbstractThe scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15–380 mJ at intensities of 1016–1018 W/cm2. The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.


2015 ◽  
Vol 82 ◽  
pp. 138-145 ◽  
Author(s):  
A.D. Oliveira ◽  
M.J. Fartaria ◽  
J. Cardoso ◽  
L.M. Santos ◽  
C. Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document