beam profile
Recently Published Documents


TOTAL DOCUMENTS

972
(FIVE YEARS 112)

H-INDEX

28
(FIVE YEARS 3)

Nanoscale ◽  
2022 ◽  
Author(s):  
Jean de Souza Matias ◽  
Katarzyna Komolibus ◽  
Sanathana Konugolu Venkata Sekar ◽  
Stefan Andersson-Engels

The presented work uses a discrete strategy of beam profile compensation to evaluate the local internal quantum yield (iQY) of upconverting nanoparticles (UCNPs) at the pixel level of the beam...


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
J. Kim ◽  
G. S. Jang ◽  
B. H. Oh ◽  
J. Lee ◽  
S. Shin

A novel scheme to measure the longitudinal emittance and phase space profile in an electron storage ring by using correlations between time and the vertical coordinate, and between energy and the horizontal coordinate, is proposed. This longitudinal profile measurement scheme will help to demonstrate recent results of advanced studies for manipulating the longitudinal beam profile and for investigating beam instability in an electron storage ring.


Author(s):  
Qingchun Luo ◽  
Yantao zhou ◽  
Yihong Qi ◽  
Pu Ye ◽  
Francesco de Paulis ◽  
...  

The testing requirements of the active phased array antennas are very different from those of traditional passive antennas, due to its beam steering capability. Usually, each beam profile of the active phased array needs a separate radiation pattern test, which makes the overall testing time extremely long. Thus the traditional antenna test method can no longer meet the efficiency and cost requirements of new active phased array antennas test. In this paper, a fast test method tailored for phased array antennas is proposed that offers significantly reduced testing time at the expense of slight sacrifice of the accuracy. Using the simulated element pattern in array and ideal port excitation, the beam profile in any direction can be predicted by testing only a certain beam profile. Through theoretical derivation and experiments, the effectiveness of the method is verified, and the testing efficiency of the phased array antenna is demonstrated to be improved by ten times or even more.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012026
Author(s):  
Christian Lutz ◽  
Cemal Esen ◽  
Ralf Hellmann

Abstract We report on the effect of simultaneous spatial and temporal beam shaping on the ablation rate, ablation efficiency and the resulting surface characteristics of micromachined stainless steel using ultrashort-pulsed lasers. Beam shaping and the use of pulse bursts are promising methods to allocate the over the last decades increasing laser power of ultrashort-pulsed lasers in ablation processes. While the individual effects of beam shaping and pulse bursts on the ablation characteristics have recently been examined, the combination of both has not yet been adequately investigated. Using a spatial light modulator to generate different spot distributions with up to six spots and different separations it is possible to spatially distribute the available laser power. In combination with temporal beam shaping using a 200 kHz repetition rate and pulse bursts with a 40 MHz intra-burst rate, we investigate the influences in a scanning-based process and find an increasing ablation rate and efficiency for higher fluences. Subsequently using bursts in combination with a multi-spot beam profile, we found a distinctive emergence of cone like protrusions and a smoothing effect for fluences between 1.5 J/cm² and 3 J/cm² with six spot beam profile.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7102
Author(s):  
Miguel Catela ◽  
Dawei Liang ◽  
Cláudia R. Vistas ◽  
Dário Garcia ◽  
Bruno D. Tibúrcio ◽  
...  

Aside from the industry-standard Gaussian intensity profile, top hat and non-conventional laser beam shapes, such as doughnut-shaped profile, are ever more required. The top hat laser beam profile is well-known for uniformly irradiating the target material, significantly reducing the heat-affected zones, typical of Gaussian laser irradiation, whereas the doughnut-shaped laser beam has attracted much interest for its use in trapping particles at the nanoscale and improving mechanical performance during laser-based 3D metal printing. Solar-pumped lasers can be a cost-effective and more sustainable alternative to accomplish these useful laser beam distributions. The sunlight was collected and concentrated by six primary Fresnel lenses, six folding mirror collectors, further compressed with six secondary fused silica concentrators, and symmetrically distributed by six twisted light guides around a 5.5 mm diameter, 35 mm length Nd:YAG rod inside a cylindrical cavity. A top hat laser beam profile (Mx2 = 1.25, My2 = 1.00) was computed through both ZEMAX® and LASCAD® analysis, with 9.4 W/m2 TEM00 mode laser power collection and 0.99% solar-to-TEM00 mode power conversion efficiencies. By using a 5.8 mm laser rod diameter, a doughnut-shaped solar laser beam profile (Mx2 = 1.90, My2 = 1.00) was observed. The 9.8 W/m2 TEM00 mode laser power collection and 1.03% solar-to-TEM00 mode power conversion efficiencies were also attained, corresponding to an increase of 2.2 and 1.9 times, respectively, compared to the state-of-the-art experimental records. As far as we know, the first numerical simulation of doughnut-shaped and top hat solar laser beam profiles is reported here, significantly contributing to the understanding of the formation of such beam profiles.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shwetabh Verma ◽  
Juergen Hesser ◽  
Samuel Arba-Mosquera

Abstract Smoother surfaces after laser vision correction have been widely accepted as a factor for improving visual recovery regardless of the used technique (PRK, LASIK, or even SMILE). We tested the impact of laser beam truncation, dithering (expressing a continuous profile on a basis of lower resolution causing pixels to round up/down the number of pulses to be placed), and jitter (a controlled random noise (up to ±20 µm in either direction) added to the theoretical scanner positions) on residual smoothness after Poly(methyl methacrylate) (PMMA) ablations, using a close-to-Gaussian beam profile. A modified SCHWIND AMARIS system has been used providing a beam profile with the following characteristics: close-to-Gaussian beam profile with full width at half maximum (FWHM) of 540 µm, 1050 Hz. Laser parameters have been optimized following Invest. Ophthalmol. Vis. Sci., vol. 58, no. 4, pp. 2021–2037, 2017, the pulse energy has been optimized following Biomed. Opt. Express vol. 4, pp. 1422–1433, 2013. For the PMMA ablations, two configurations (with a 0.7 mm pinhole and 0.75 mJ and without pinhole and 0.9 mJ (for fluences of 329 mJ/cm2 and 317 mJ/cm2 and corneal spot volumes of 174 and 188 pl)) were considered, along with two types of lattices (with and without ordered dithering to select the optimum pulse positions), and two types of spot placement (with and without jitter). Real ablations on PMMA (ranging from −12D to +6D with and without astigmatism of up to 3D) completed the study setup. The effect of the 2 × 2 × 2 different configurations was analyzed based on the roughness in ablation estimated from the root mean square error in ablation. Truncation of the beam is negatively associated to a higher level of residual roughness; ordered dithering to select the optimum pulse positions is positively associated to a lower level of residual roughness; jitter is negatively associated to a higher level of residual roughness. The effect of dithering was the largest, followed by truncation, and jitter had the lowest impact on results. So that: Dithering approaches help to further minimize residual roughness after ablation; minimum (or no) truncation of the beam is essential to minimize residual roughness after ablation; and jitter shall be avoided to minimize residual roughness after ablation. The proposed model can be used for optimization of laser systems used for ablation processes at relatively low cost and would directly improve the quality of results. Minimum (or no) truncation of the beam is essential to minimize residual roughness after ablation. Ordered dithering without jitter helps to further minimize residual roughness after ablation. Other more complex dithering approaches may further contribute to minimize residual roughness after ablation.


Sign in / Sign up

Export Citation Format

Share Document