Light transport in three-dimensional semi-infinite scattering media

2012 ◽  
Vol 29 (7) ◽  
pp. 1475 ◽  
Author(s):  
André Liemert ◽  
Alwin Kienle
2013 ◽  
Vol 21 (22) ◽  
pp. 26671 ◽  
Author(s):  
Antonio M. Caravaca-Aguirre ◽  
Donald B. Conkey ◽  
Jacob D. Dove ◽  
Hengyi Ju ◽  
Todd W. Murray ◽  
...  

2008 ◽  
Author(s):  
Mohammad Hadi Bordbar ◽  
Timo Hyppa¨nen

This paper describes the theoretical bases of the Radiative Exchange Method, a new numerical method for simulating radiation heat transfer. By considering radiative interaction between all points of the geometry and solving the radiation balance equation in a mesh structure coarser than the structure used in computational fluid flow calculation, this method is able to simulate radiative heat transfer in arbitrary 3D space with absorbing, emitting and scattering media surrounded by emitting, absorbing and reflecting surfaces. A new concept is introduced, that of the exchange factors between the different elements that are necessary for completing the radiative balance equation set. Using this method leads to a set of algebraic equations for the radiative outgoing power from each coarse cell being produced and the result of this set of equations was then used to calculate the volumetric radiative source term in the fine cell structure. The formulation of the exchange factor for a three-dimensional state and also a mesh size analysis that was conducted to optimize the accuracy and runtime are presented. The results of this model to simulate typical 3D furnace shape geometry, is verified by comparison with those of other numerical methods.


2017 ◽  
Vol 226 (7) ◽  
pp. 1549-1561 ◽  
Author(s):  
L. A. Cobus ◽  
B. A. van Tiggelen ◽  
A. Derode ◽  
J. H. Page

2019 ◽  
Vol 19 (1) ◽  
pp. 12-25 ◽  
Author(s):  
Hanyu Zhan ◽  
Hanwan Jiang ◽  
Ruinian Jiang

The simultaneous detection of multiple defects in concrete structures is a task of pivotal importance for non-destructive testing and evaluation. Diffuse waves experiencing multiple scattering inside media are demonstrated to be sensitive to weak defects. Here, an analytic model is presented for diffuse wave decorrelation associated with sensitivity kernel that describes the time-of-flight distribution in strongly scattering environments. The model is then used for generating three-dimensional images that involve estimating perturbations at each localized position through an iterative, non-linear algorithm. With the consideration of loads and micro-cracks effects on diffuse waves, an application of the approach to a real-size concrete beam shows features that denote the positions and depths of multiple existing cracks. Extension of the approach to other strongly scattering media such as tissues and volcanos is straightforward. This study offers great potential for practical applications such as structural health monitoring, medical image generation, and seismic monitoring.


Sign in / Sign up

Export Citation Format

Share Document