Heat Transfer: Volume 3
Latest Publications


TOTAL DOCUMENTS

88
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

9780791848494

2008 ◽  
Author(s):  
Colin M. Beal ◽  
Ofodike A. Ezekoye

Positive Pressure Ventilation (PPV) is a widely used fire fighting tactic in which a fan is used to push hot products of fire out of a burning structure. There is a recent body of research that has been conducted regarding the advantages and disadvantages of PPV. Studies of PPV most commonly use full scale experimental fires and/or computational simulations to evaluate its effectiveness. This paper presents computational simulations that have been conducted using Fire Dynamic Simulator (FDS) version 5 to evaluate the effects of exit vent location on resulting fire room conditions during the application of PPV to a ventilation constrained fire. The simulations use a simple one room structure with an adjacent hallway. We are simulating this geometry because we are in the process of designing and constructing a similar experimental compartment. Cold flow simulations are first conducted to understand how much the presence of the fire heat release affects the flow patterns. Then, two simulations which employ PPV with different exit vent locations are compared. The differences between the two simulations are detailed and a physical explanation for the differences is presented.


2008 ◽  
Author(s):  
Mohammad Hadi Bordbar ◽  
Timo Hyppa¨nen

This paper describes the theoretical bases of the Radiative Exchange Method, a new numerical method for simulating radiation heat transfer. By considering radiative interaction between all points of the geometry and solving the radiation balance equation in a mesh structure coarser than the structure used in computational fluid flow calculation, this method is able to simulate radiative heat transfer in arbitrary 3D space with absorbing, emitting and scattering media surrounded by emitting, absorbing and reflecting surfaces. A new concept is introduced, that of the exchange factors between the different elements that are necessary for completing the radiative balance equation set. Using this method leads to a set of algebraic equations for the radiative outgoing power from each coarse cell being produced and the result of this set of equations was then used to calculate the volumetric radiative source term in the fine cell structure. The formulation of the exchange factor for a three-dimensional state and also a mesh size analysis that was conducted to optimize the accuracy and runtime are presented. The results of this model to simulate typical 3D furnace shape geometry, is verified by comparison with those of other numerical methods.


2008 ◽  
Author(s):  
Mohamad Al-Othmani ◽  
Nesreen Ghaddar ◽  
Kamel Ghali

In this work, human transient thermal responses and comfort are studied in non-uniform radiant heating and convective heating environments. The focus was on a change from walking activity of human in outdoor cold environment at high clothing insulation to warm indoor environment at sedentary activity level associated with lower clothing insulation. A transient multi-segmented bioheat model sensitive to radiant asymmetry is used to compare how fast the human body approaches steady state thermal conditions in both radiative and convective warm environments. A space thermal model is integrated with the bioheat model to predict the transient changes in skin and core temperature of a person subject to change in metabolic rate and clothing insulation when entering conditioned indoor space. It was found that overall thermal comfort and neutrality were reached in 6.2 minutes in the radiative environment compared to 9.24 minutes in convective environment. The local thermal comfort of various body segments differed in their response to the convective system where it took more than 19 minutes for extremities to reach local comfort unlike the radiative system where thermal comfort was attained within 7 minutes.


2008 ◽  
Author(s):  
Esam M. Alawadhi

Natural convection flow in a cube with a heated strip is solved numerically. The heated strip is attached horizontally to the front wall and maintained at high temperature, while the entire opposite wall is maintained at low temperature. The heated strip simulates an array of electronic chips The Rayleigh numbers of 104, 105, and 106 are considered in the analysis and the heated strip is horizontally attached to the wall. The results indicate that the heat transfer strongly depends on the position of the heated strip. The maximum Nusselt number can be achieved if the heater is placed at the lower half of the vertical wall. Increasing the Rayleigh number significantly promotes heat transfer in the enclosure. Flow streamlines and temperature contours are presented, and the results are validated against published works.


2008 ◽  
Author(s):  
Armando Gallegos-Mun˜oz ◽  
Armando Balderas-Bernal ◽  
Alejandro Rami´rez-Barro´n ◽  
J. C. Prince-Avelino

The study of the gas combustion LP in an atmospheric burner to bake ceramics is presented. The study includes different models from combustion and turbulence to find the best interaction chemistry-turbulence, applying Computational Fluids Dynamics (CFD) through FLUENT®. For the study different models of combustion were considered, where the finite speed of the reaction is important by means of kinetic chemistry from Arrhenius. The different models of combustion were; a generalized model of speed of Finite Rate/Eddy dissipation, non-premixed combustion Laminar Flamelet and Eddy dissipation. Each one of these models represents the combustion non-premixed of gas LP, to simulate the combustion of turbulent diffusive flames. For the study of the turbulence the model k-epsilon was applied. The results obtained for each combination turbulence-chemistry were compared with experimental measurements of temperature within the furnace. This comparison allowed making adjustments in the modeling of the process of combustion, identifying the best interaction between combustion and turbulence. According to the obtained results, the k-epsilon model represents adequately the fluid-dynamic development of the flame within the furnace. The models of combustion Finite Rate/Eddy dissipation and Laminar Flamelet show the best approach to the experimental results, where the k-epsilon model is applied to modeling the turbulence-chemistry interaction.


2008 ◽  
Author(s):  
Ankan Kumar ◽  
Sandip Mazumder

Many reacting flow applications mandate coupled solution of the species conservation equations. A low-memory coupled solver was developed to solve the species transport equations on an unstructured mesh with implicit spatial as well as species-to-species coupling. First, the computational domain was decomposed into sub-domains comprised of geometrically contiguous cells—a process termed internal domain decomposition (IDD). This was done using the binary spatial partitioning (BSP) algorithm. Following this step, for each sub-domain, the discretized equations were developed using the finite-volume method, written in block implicit form, and solved using an iterative solver based on Krylov sub-space iterations, i.e., the Generalized Minimum Residual (GMRES) solver. Overall (outer) iterations were then performed to treat explicitness at sub-domain interfaces and non-linearities in the governing equations. The solver is demonstrated for a laminar ethane-air flame calculation with five species and a single reaction step, and for a catalytic methane-air combustion case with 19 species and 22 reaction steps. It was found that the best performance is manifested for sub-domain size of about 1000 cells, the exact number depending on the problem at hand. The overall gain in computational efficiency was found to be a factor of 2–5 over the block Gauss-Seidel procedure.


2008 ◽  
Author(s):  
V. Egan ◽  
D. T. Newport ◽  
V. Larcarac ◽  
B. Estebe

For many applications the optimisation of natural convection cooling is a major design consideration due to factors such as weight, accessibility, cost and power consumption. In aircraft wing compartments, natural convection is the dominant mode of heat transfer due to high wall temperatures resulting from solar loading and heat dissipating internal electronics. This paper investigates the flow structures in a leading edge compartment subject to various thermal boundary conditions. The experimental configuration consisted of two leading edge enclosures; the first is a single compartment while the second has an attached wing box. Particle image velocimetry (PIV) was employed to obtain velocity measurements of the flow in both leading edge enclosures. The second compartment investigated the effect of an adjacent fluid filled enclosure on the flow regime in the leading edge compartment. Higher local velocities were found in the second compartment due to an increase in buoyancy forces resulting from a lower of the average fluid temperature within the compartment. The introduction of a heat dissipating component gave rise to two separate convection structures and in general increased the fluctuations in the both temperature and velocities within the compartment.


Author(s):  
Christian Rauch ◽  
Thomas Ho¨rmann ◽  
Sebastian Jagsch ◽  
Raimund Almbauer

Much attention has been paid recently by research and development engineers on performing multi-physics calculations. One way to do this is to couple commercial tools for examining complex systems. Since the proposal of an software architecture for coupling programs as published in a previous paper significant changes have led to an improved performance for large-scale industrial applications. This architecture is being described and as a proof of concept a simulation is being conducted by coupling two commercial solvers. The speed-up of the new system is being presented. The simulation results are then compared with measurements of surface temperatures of an exhaust system of an actual sports utilities vehicle (SUV) and conclusions are being drawn. The proposed architecture is easily adaptable to various programs as it is implemented in C++ and changes for a specific code can be restricted to a view classes.


2008 ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

The use of an interrupted plate fin with surface roughness in the form of split-dimples is investigated. Time-dependent high-fidelity simulations are conducted for laminar, early turbulent, and fully turbulent flows, ReH = 360, 800, and 2000. Detailed analysis of the domain’s flow structure, turbulent statistics, and heat transfer distribution is presented. Regions of high heat transfer occur at the fin and protrusion leading edges, at flow impingement on the protrusion faces, and flow acceleration region between protrusions. Flow separation and large wakes induced by the large protruding surfaces of the split-dimples, increase friction losses and reduce heat transfer from the fin. The split-dimple fin has a heat conductance 60–175% higher than that of the plate fin, but at 4–8 times the pressure drop.


2008 ◽  
Author(s):  
Hongsheng Guo ◽  
Stephanie Trottier ◽  
Matthew R. Johnson ◽  
Gregory J. Smallwood

The sooting propensity of laminar diffusion flames employing ethylene/methane mixture fuel is investigated by numerical simulation. Detailed gas phase chemistry and moments method are used to describe the chemical reaction process and soot particle dynamics, respectively. The numerical model captures the primary features experimentally observed previously. At constant temperatures of air and fuel mixture, both maximum soot volume fraction and soot yield monotonically decrease with increasing the fraction of carbon from methane in the fuel mixture. However, when the temperatures of air and fuel mixture are preheated so that the adiabatic temperatures of all flames are same, the variation of the maximum soot yield becomes higher than what would be expected from a linear combination of the flames of pure ethylene and pure methane, showing a synergistic phenomenon in soot formation. Further analysis of the details of the numerical results suggests that the synergistic phenomenon is caused by the combined effects of the variations in the concentrations of acetylene (C2H2) and methyl radical (CH3). When the fraction of carbon from methane in fuel mixture increases, the concentration of C2H2 monotonically decreases, whereas that of methyl radical increases, resulting in a synergistic phenomenon in the variation of propargyl (C3H3) radical concentration due to the reactions C2H2 + CH3 = PC3H4 + H and PC3H4 + H = C3H3 + H2. This synergistic phenomenon causes a qualitatively similar variation trend in the concentration of pyrene (A4) owing to the reaction paths C3H3 → A1 (benzene) → A2 (naphthalene) → A3 (phenanthrene) → A4. Consequently, the synergistic effect occurs for soot inception and PAH condensation rates, leading to the synergistic phenomenon in soot yield. The similar synergistic phenomenon is not observed in the variation of peak soot volume fraction, since the maximum surface growth rate monotonically decreases, as the fraction of carbon from methane in fuel mixture increases.


Sign in / Sign up

Export Citation Format

Share Document