Inhomogeneous Poisson process rate function inference from dead-time limited observations

2017 ◽  
Vol 34 (5) ◽  
pp. 770 ◽  
Author(s):  
Gunjan Verma ◽  
Robert J. Drost
2001 ◽  
Vol 38 (A) ◽  
pp. 122-130 ◽  
Author(s):  
Ali S. Dabye ◽  
Yury A. Kutoyants

Consider an inhomogeneous Poisson process X on [0, T] whose unknown intensity function ‘switches' from a lower function g∗ to an upper function h∗ at some unknown point θ∗. What is known are continuous bounding functions g and h such that g∗(t) ≤ g(t) ≤ h(t) ≤ h∗(t) for 0 ≤ t ≤ T. It is shown that on the basis of n observations of the process X the maximum likelihood estimate of θ∗ is consistent for n →∞, and also that converges in law and in pth moment to limits described in terms of the unknown functions g∗ and h∗.


1994 ◽  
Vol 26 (1) ◽  
pp. 122-154 ◽  
Author(s):  
Stephen L. Rathbun ◽  
Noel Cressie

Consider a spatial point pattern realized from an inhomogeneous Poisson process on a bounded Borel set , with intensity function λ (s; θ), where . In this article, we show that the maximum likelihood estimator and the Bayes estimator are consistent, asymptotically normal, and asymptotically efficient as the sample region . These results extend asymptotic results of Kutoyants (1984), proved for an inhomogeneous Poisson process on [0, T] , where T →∞. They also formalize (and extend to the multiparameter case) results announced by Krickeberg (1982), for the spatial domain . Furthermore, a Cramér–Rao lower bound is found for any estimator of θ. The asymptotic properties of and are considered for modulated (Cox (1972)), and linear Poisson processes.


1978 ◽  
Vol 15 (3) ◽  
pp. 552-559 ◽  
Author(s):  
Donald P. Gaver ◽  
Patricia A. Jacobs

A study is made of the extremal process generated by i.i.d. random variables appearing at the events of a non-homogeneous Poisson process, 𝒫. If 𝒫 has an exponentially increasing rate function, then records eventually occur in a homogeneous Poisson process. The size of the latest record has a classical extreme value distribution.


1994 ◽  
Vol 26 (01) ◽  
pp. 122-154 ◽  
Author(s):  
Stephen L. Rathbun ◽  
Noel Cressie

Consider a spatial point pattern realized from an inhomogeneous Poisson process on a bounded Borel set , with intensity function λ (s; θ), where . In this article, we show that the maximum likelihood estimator and the Bayes estimator are consistent, asymptotically normal, and asymptotically efficient as the sample region . These results extend asymptotic results of Kutoyants (1984), proved for an inhomogeneous Poisson process on [0, T] , where T →∞. They also formalize (and extend to the multiparameter case) results announced by Krickeberg (1982), for the spatial domain . Furthermore, a Cramér–Rao lower bound is found for any estimator of θ. The asymptotic properties of and are considered for modulated (Cox (1972)), and linear Poisson processes.


Sign in / Sign up

Export Citation Format

Share Document