process rate
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5225
Author(s):  
Przemysław Kowal ◽  
Sławomir Ciesielski ◽  
Jeremiah Otieno ◽  
Joanna Barbara Majtacz ◽  
Krzysztof Czerwionka ◽  
...  

Implementation of anaerobic digestion of primary sludge in modern wastewater treatment plants (WWTPs) limits the availability of organic carbon for denitrification in conventional nitrification-denitrification (N/DN) systems. In order to ensure efficient denitrification, dosage of the external carbon source is commonly undertaken. However, application of commercial products, such us ethanol or acetate, greatly increases operational costs. As such, inexpensive and efficient alternative carbon sources are strongly desirable. In this study, the use of the fusel oil, a by-product from the distillery industry, was validated in terms of the denitrification process enhancement and impact on the activated sludge bacterial community structure. The experiment was conducted at a full scale biological nutrient removal facility (210,000 PE), in the set of the two technological lines: the experimental line (where fusel oil was introduced at 45 cm3/m3 dose) and the reference line (without an external carbon source addition). During the experimental period of 98 days, conventional nitrate utilization rate (NUR) measurements were carried out on a regular basis in order to assess the biomass adaptation to the fusel oil addition and denitrification process enhancement. While the NURs remained at a stable level in the reference line (1.4 ± 0.1 mg NO3-N/g VSS·h) throughout the entire duration of the experiment, the addition of fusel oil gradually enhanced the denitrification process rate up to 2.7 mg NO3-N/g VSS·h. Moreover, fusel oil contributed to the mitigation of the variability of NO3-N concentrations in the effluent from the anoxic zone. The bacterial community structure, characterized by 16S rRNA PCR—DGGE and the clone libraries of the genes involved in the denitrification process (nirS and nirK), was comparable between the reference and the experimental line during the entire experimental period. In both analyzed lines, the most frequent occurrence of denitrifiers belonging to the genera Acidovorax, Alcaligenes, Azoarcus, Paracoccus and Thauera was noticed. Our results proved that fusel oil would a valuable substrate for denitrification. The addition of fusel oil enhances the process rate and does not reflect a severe selection pressure on the bacterial community at applicable doses. Practical application of fusel oil generates opportunities for the WWTPs to meet effluent standards and reduce operational costs, as well as optimizing waste management for the distillery industry.


2021 ◽  
Author(s):  
Karly Reimel ◽  
Marcus van Lier-Walqui ◽  
Matthew Kumjian ◽  
Hugh Morrison ◽  
Olivier Prat

<p>Representing microphysics within weather and climate models is challenging because we lack fundamental understanding of microphysical processes and are limited by the computational inability to track each hydrometeor within a cloud system.  Microphysics schemes parameterize rates for specific processes such as drop evaporation, collision-coalescence, or collisional-breakup, but their inherent assumptions lead to uncertainty in model solutions which are often difficult to understand and quantify. Observations such as those from polarimetric radar provide insight into the microphysical evolution of clouds, but alone they are unable to provide quantitative information about the process rates that lead to this evolution. The Bayesian Observationally Constrained Statistical-Physical Scheme (BOSS) is a recently-developed bulk microphysics scheme designed to bridge the gap between observations and the processes acting on individual drops, such that process rate information can be directly learned from polarimetric radar observations. BOSS operates with no predefined drop size distribution (DSD) shape and makes few assumptions about the process rate formulations. Because there is no prescribed DSD shape, a new moment-based polarimetric forward operator is used to relate model prognostic moment output to polarimetric radar variables.  Process rates are written as generalized power functions of the prognostic DSD moments (related to bulk quantities such as mass concentrations), with flexibility to choose the number and order of the prognostic DSD moments and number of power terms in the process rate formulations.  The corresponding process rate parameters are constrained directly with observation using Markov chain Monte Carlo in a Bayesian inference framework, allowing BOSS to learn microphysical information directly from observations while simultaneously quantifying parametric uncertainty. The process rate formulations in BOSS can be made systematically more complex by adding more terms and/or more prognostic DSD moments, which allows us also to track down sources of structural uncertainty. In this study, we use a detailed bin microphysics scheme as “truth” to generate the constraining observations synthetically, which include profiles of polarimetric radar variables (Z<sub>H</sub>, Z<sub>DR</sub>, K<sub>DP</sub>) and vertical fluxes of prognostic DSD moments at the surface. An error analysis shows that BOSS produces process rate profiles similar to those of a bin scheme when only provided polarimetric rain profiles and surface prognostic moment fluxes. We also display initial results where BOSS is used to estimate microphysical process rate information from real polarimetric radar observations.  </p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marko Ušaj ◽  
Luisa Moretto ◽  
Venukumar Vemula ◽  
Aseem Salhotra ◽  
Alf Månsson

AbstractBenefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2–0.5 s−1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction.


2020 ◽  
Vol 24 (2) ◽  
pp. 223-246
Author(s):  
Monika Cioch-Skoneczny ◽  
Krystian Klimczak ◽  
Paweł Satora ◽  
Szymon Skoneczny ◽  
Marek Zdaniewicz ◽  
...  

AbstractThe objective of this paper was to test the potential of selected non-Saccharomyces strains for beer production, by using Saccharomyces cerevisiae as a control sample. For some of variants brewing enzymes were added to wort to increase the content of fermentable sugars. The non-Saccharomyces yeasts differed in the fermentation process rate. The basic beer physiochemical parameters were assessed, including: alcohol content, extract, free amino nitrogen, sugars, acidity, colour, and the profile of volatile compounds and metal ions. The use of enzymes caused an increase in alcohol and fusel alcohols concentration in beers obtained. Total acidity, free amine nitrogen content, colour and sugar content indicated that the tested non-Saccharomyces yeast allowed obtaining beers with the proper analytical parameters.


Author(s):  
Vladislav Guskov ◽  
Fabian Langkabel ◽  
Matthias Berg ◽  
Annika Bande

The interparticle Coulombic decay is a synchronized decay and ionization phenomenon occurring on two separated and only Coulomb interaction coupled electron binding sites. This publication explores how drastically small environmental changes in between the two sites, basically impurities, can alter the ionization properties and process rate, although the involved electronic transitions remain unaltered. A comparison among the present electron dynamics calculations for the example of different types of quantum dots, accommodating a one- or a two-dimensional continuum for the outgoing electron, and the well-investigated atomic and molecular cases with three-dimensional continuum, reveals that the impurity effect is most pronounced the stronger that electron is confined. This necessarily leads to challenges and opportunities in a quantum dot experiment to prove the interparticle Coulombic decay.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3456
Author(s):  
Tianci Zhao ◽  
Xiaolong Ma ◽  
Hao Cai ◽  
Zichuan Ma ◽  
Huifeng Liang

A series of the magnetic CuFe2O4-loaded corncob biochar (CuFe2O4@CCBC) materials was obtained by combining the two-step impregnation of the corncob biochar with the pyrolysis of oxalate. CuFe2O4@CCBC and the pristine corncob biochar (CCBC) were characterized using XRD, SEM, VSM, BET, as well as pHZPC measurements. The results revealed that CuFe2O4 had a face-centered cubic crystalline phase and was homogeneously coated on the surface of CCBC. The as-prepared CuFe2O4@CCBC(5%) demonstrated a specific surface area of 74.98 m2·g−1, saturation magnetization of 5.75 emu·g−1 and pHZPC of 7.0. The adsorption dynamics and thermodynamic behavior of Pb(II) on CuFe2O4@CCBC and CCBC were investigated. The findings indicated that the pseudo-second kinetic and Langmuir equations suitably fitted the Pb(II) adsorption by CuFe2O4@CCBC or CCBC. At 30 °C and pH = 5.0, CuFe2O4@CCBC(5%) displayed an excellent performance in terms of the process rate and adsorption capacity towards Pb(II), for which the theoretical rate constant (k2) and maximum adsorption capacity (qm) were 7.68 × 10−3 g·mg−1··min−1 and 132.10 mg·g−1 separately, which were obviously higher than those of CCBC (4.38 × 10−3 g·mg−1·min−1 and 15.66 mg·g−1). The thermodynamic analyses exhibited that the adsorption reaction of the materials was endothermic and entropy-driven. The XPS and FTIR results revealed that the removal mechanism could be mainly attributed to the replacement of Pb2+ for H+ in Fe/Cu–OH and –COOH to form the inner surface complexes. Overall, the magnetic CuFe2O4-loaded biochar presents a high potential for use as an eco-friendly adsorbent to eliminate the heavy metals from the wastewater streams.


2020 ◽  
Vol 329 ◽  
pp. 02036
Author(s):  
Alexander Klimov ◽  
Michael Zinigrad

The results of the vanadium reduction laboratory investigation are presented. Experiments were conducted with CaO-SiO2 -Al2 O3 -V2 O3 slags in a wide range of compositions in an air atmosphere. A saturated iron- carbon melt was used as a reducing agent. The reduction kinetics was studied by sampling. V2 O3 reduction from slags having a viscosity of more than 0.5 Pa⋅s and containing less than 7.5–8.0% V2 O3 proceeds in a diffusion mode. The reaction is of the first order in vanadium. The process rate is inversely proportional to the square root of slag viscosity. A good agreement between the obtained data and the results of electrochemical studies on the cathodic reduction of vanadium was found. One made possible to deduce the rate equation of vanadium reduction by an iron-carbon melt depending on the volume concentration, temperature and slag viscosity. The calculated data for different slags acceptably check with those found by experiment.


Sign in / Sign up

Export Citation Format

Share Document