scholarly journals Sparse Data-Driven Wavefront Prediction forLarge-Scale Adaptive Optics

Author(s):  
Paulo Cerqueira ◽  
Pieter Piscaer ◽  
Michel Verhaegen
2020 ◽  
Vol 498 (3) ◽  
pp. 3228-3240
Author(s):  
Baptiste Sinquin ◽  
Léonard Prengère ◽  
Caroline Kulcsár ◽  
Henri-François Raynaud ◽  
Eric Gendron ◽  
...  

ABSTRACT Dedicated tip–tilt loops are commonly implemented on adaptive optics (AO) systems. In addition, a number of recent high-performance systems feature tip–tilt controllers that are more efficient than the integral action controller. In this context, linear–quadratic–Gaussian (LQG) tip–tilt regulators based on stochastic models identified from AO telemetry have demonstrated their capacity to effectively compensate for the cumulated effects of atmospheric disturbance, windshake and vibrations. These tip–tilt LQG regulators can also be periodically retuned during AO operations, thus allowing to track changes in the disturbances’ temporal dynamics. This paper investigates the potential benefit of extending the number of low-order modes to be controlled using models identified from AO telemetry. The global stochastic dynamical model of a chosen number of turbulent low-order modes is identified through data-driven modelling from wavefront sensor measurements. The remaining higher modes are modelled using priors with autoregressive models of order 2. The loop is then globally controlled using the optimal LQG regulator build from all these models. Our control strategy allows for combining a dedicated tip–tilt loop with a deformable mirror that corrects for the remaining low-order modes and for the higher orders altogether, without resorting to mode decoupling. Performance results are obtained through evaluation of the Strehl ratio computed on H-band images from the scientific camera, or in replay mode using on-sky AO telemetry recorded in 2019 July on the CANARY instrument.


Author(s):  
Sebastiaan Y. Haffert ◽  
Jared R. Males ◽  
Laird M. Close ◽  
Kyle Van Gorkom ◽  
Joseph D. Long ◽  
...  

Author(s):  
Alexander Rodríguez ◽  
Anika Tabassum ◽  
Jiaming Cui ◽  
Jiajia Xie ◽  
Javen Ho ◽  
...  

AbstractHow do we forecast an emerging pandemic in real time in a purely data-driven manner? How to leverage rich heterogeneous data based on various signals such as mobility, testing, and/or disease exposure for forecasting? How to handle noisy data and generate uncertainties in the forecast? In this paper, we present DeepCovid, an operational deep learning framework designed for real-time COVID-19 forecasting. Deep-Covid works well with sparse data and can handle noisy heterogeneous data signals by propagating the uncertainty from the data in a principled manner resulting in meaningful uncertainties in the forecast. The deployed framework also consists of modules for both real-time and retrospective exploratory analysis to enable interpretation of the forecasts. Results from real-time predictions (featured on the CDC website and FiveThirtyEight.com) since April 2020 indicates that our approach is competitive among the methods in the COVID-19 Forecast Hub, especially for short-term predictions.


2012 ◽  
Author(s):  
J. Antonello ◽  
R. Fraanje ◽  
H. Song ◽  
M. Verhaegen ◽  
H. Gerritsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document