scholarly journals Optimized calibration strategy for high order adaptive optics systems in closed-loop: the slope-oriented Hadamard actuation

2015 ◽  
Vol 23 (21) ◽  
pp. 27134 ◽  
Author(s):  
Serge Meimon ◽  
Cyril Petit ◽  
Thierry Fusco
2021 ◽  
Vol 9 ◽  
Author(s):  
Deen Wang ◽  
Xin Zhang ◽  
Wanjun Dai ◽  
Ying Yang ◽  
Xuewei Deng ◽  
...  

Abstract A 1178 J near diffraction limited 527 nm laser is realized in a complete closed-loop adaptive optics (AO) controlled off-axis multi-pass amplification laser system. Generated from a fiber laser and amplified by the pre-amplifier and the main amplifier, a 1053 nm laser beam with the energy of 1900 J is obtained and converted into a 527 nm laser beam by a KDP crystal with 62% conversion efficiency, 1178 J and beam quality of 7.93 times the diffraction limit (DL). By using a complete closed-loop AO configuration, the static and dynamic wavefront distortions of the laser system are measured and compensated. After correction, the diameter of the circle enclosing 80% energy is improved remarkably from 7.93DL to 1.29DL. The focal spot is highly concentrated and the 1178 J, 527 nm near diffraction limited laser is achieved.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoyan Qin

This paper studies the problem of the adaptive neural control for a class of high-order uncertain stochastic nonlinear systems. By using some techniques such as the backstepping recursive technique, Young’s inequality, and approximation capability, a novel adaptive neural control scheme is constructed. The proposed control method can guarantee that the signals of the closed-loop system are bounded in probability, and only one parameter needs to be updated online. One example is given to show the effectiveness of the proposed control method.


2008 ◽  
Author(s):  
Antonin H. Bouchez ◽  
Richard G. Dekany ◽  
John R. Angione ◽  
Christoph Baranec ◽  
Matthew C. Britton ◽  
...  

2018 ◽  
Vol 41 (7) ◽  
pp. 1888-1895
Author(s):  
Fangzheng Gao ◽  
Yanling Shang ◽  
Yuqiang Wu ◽  
Yanhong Liu

This paper considers the problem of global fixed-time stabilization for a class of uncertain high-order nonlinear systems. One distinct characteristic of this work is that the system under consideration possesses the dead-zone input nonlinearity. By delicately combining the sign function with a power integrator technique, a state feedback controller is designed such that the states of the resulting closed-loop system converge to the origin within a fixed time. A simulation example is provided to illustrate the effectiveness of the proposed approach.


2007 ◽  
Vol 119 (860) ◽  
pp. 1114-1125 ◽  
Author(s):  
S. E. Egner ◽  
W. Gaessler ◽  
T. M. Herbst ◽  
R. Ragazzoni

Sign in / Sign up

Export Citation Format

Share Document