scholarly journals Assessment of Inhibitors of Pathogenic Crimean-Congo Hemorrhagic Fever Virus Strains Using Virus-Like Particles

2015 ◽  
Vol 9 (12) ◽  
pp. e0004259 ◽  
Author(s):  
Marko Zivcec ◽  
Maureen G. Metcalfe ◽  
César G. Albariño ◽  
Lisa W. Guerrero ◽  
Scott D. Pegan ◽  
...  
2020 ◽  
Vol 14 (8) ◽  
pp. e0008637 ◽  
Author(s):  
Robert W. Cross ◽  
Abhishek N. Prasad ◽  
Viktoriya Borisevich ◽  
Joan B. Geisbert ◽  
Krystle N. Agans ◽  
...  

Heliyon ◽  
2017 ◽  
Vol 3 (11) ◽  
pp. e00439 ◽  
Author(s):  
Nariman Shahhosseini ◽  
Ahmad Jafarbekloo ◽  
Zakkyeh Telmadarraiy ◽  
Sadegh Chinikar ◽  
Ali Haeri ◽  
...  

2018 ◽  
Vol 11 (3) ◽  
Author(s):  
Faezeh Faghihi ◽  
Zakkyeh Telmadarraiy ◽  
Sadegh Chinikar ◽  
Norbert Nowotny ◽  
Anthony R. Fooks ◽  
...  

2004 ◽  
Vol 149 (11) ◽  
pp. 2199-2213 ◽  
Author(s):  
J. H. Kuhn ◽  
S. V. Seregin ◽  
S. P. Morzunov ◽  
I. D. Petrova ◽  
O. I. Vyshemirskii ◽  
...  

2016 ◽  
Vol 7 (6) ◽  
pp. 1216-1221 ◽  
Author(s):  
Peyvand Biglari ◽  
Sadegh Chinikar ◽  
Hamid Belqeiszadeh ◽  
Zakkyeh Telmadarraiy ◽  
Ehsan Mostafavi ◽  
...  

Virus Genes ◽  
2004 ◽  
Vol 28 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Sergei V. Seregin ◽  
Evgeny I. Samokhvalov ◽  
Irina D. Petrova ◽  
Oleg I. Vyshemirskii ◽  
Ekaterina G. Samokhvalova ◽  
...  

2015 ◽  
Vol 89 (11) ◽  
pp. 5957-5967 ◽  
Author(s):  
Stephanie Devignot ◽  
Eric Bergeron ◽  
Stuart Nichol ◽  
Ali Mirazimi ◽  
Friedemann Weber

ABSTRACTCrimean-Congo hemorrhagic fever virus(CCHFV; genusNairovirus) is an extremely pathogenic member of theBunyaviridaefamily. Since handling of the virus requires a biosafety level 4 (BSL-4) facility, little is known about pathomechanisms and host interactions. Here, we describe the establishment of a transcriptionally competent virus-like particle (tc-VLP) system for CCHFV. Recombinant polymerase (L), nucleocapsid protein (N) and a reporter minigenome expressed in human HuH-7 cells resulted in formation of transcriptionally active nucleocapsids that could be packaged by coexpressed CCHFV glycoproteins into tc-VLPs. The tc-VLPs resembled authentic virus particles in their protein composition and neutralization sensitivity to anti-CCHFV antibodies and could recapitulate all steps of the viral replication cycle. Particle attachment, entry, and primary transcription were modeled by infection of naive cells. The subsequent steps of genome replication, secondary transcription, and particle assembly and release can be obtained upon passaging the tc-VLPs on cells expressing CCHFV structural proteins. The utility of the VLP system was demonstrated by showing that the endonuclease domain of L is located around amino acid D693, as was predictedin silicoby B. Morin et al. (PLoS Pathog 6:e1001038, 2010,http://dx.doi.org/10.1371/journal.ppat.1001038). The tc-VLP system will greatly facilitate studies and diagnostics of CCHFV under non-BSL-4 conditions.IMPORTANCECrimean-Congo hemorrhagic fever virus (CCHFV) is an extremely virulent pathogen of humans. Since the virus can be handled only at the highest biosafety level, research is restricted to a few specialized laboratories. We developed a plasmid-based system to produce virus-like particles with the ability to infect cells and transcribe a reporter genome. Due to the absence of viral genes, the virus-like particles are unable to spread or cause disease, thus allowing study of aspects of CCHFV biology under relaxed biosafety conditions.


Sign in / Sign up

Export Citation Format

Share Document