particle assembly
Recently Published Documents


TOTAL DOCUMENTS

502
(FIVE YEARS 113)

H-INDEX

61
(FIVE YEARS 6)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Oliver Siering ◽  
Roberto Cattaneo ◽  
Christian K. Pfaller

Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.


2022 ◽  
Author(s):  
Sangwook Bae ◽  
Daewon Lee ◽  
Hunjong Na ◽  
Jiseong Jang ◽  
Sunghoon Kwon

Barcoded planar microparticles have many qualities suitable for developing cost-efficient multiplexed immunoassays. But at the translational research level, there are a number of technical aspects yet remain to be addressed which includes robustness and efficiency of the assay readout process. Assay readout process involves automated barcode identification and signal intensity values from each planar microparticle. For this, each microparticle has to be correctly aligned for correct barcode readout while being, ideally, compactly assembled for maximum microparticle imaging efficiency. To simultaneously achieve such alignment and assembly of microparticles but in a straightforward manner, we designed a microfluidic microparticle assembling chip that only requires a single pipetting step. Our design utilizes capillary flow based guided particle assembly, which allows maximum microparticle-based immunoassay readout efficiency. With the aid of image processing algorithms, we obtained good multiplex immunoassay readout accuracy similar to conventional imaging platforms. Our approach is applicable to both soft elastomer materials (e.g. PDMS) and rigid materials (e.g. polystyrene), the latter of which is frequently used for injection molding based mass production. We anticipate our device could help developing facile and user-friendly platform technologies based on barcoded planar microparticles.


2021 ◽  
Author(s):  
Daniel D. Brauer ◽  
Celine B. Santiago ◽  
Zoe N. Merz ◽  
Esther McCarthy ◽  
Danielle Tullman-Ercek ◽  
...  

Virus-like particles (VLPs) are non-infections viral-derived nanomaterials poised for biotechnological applications due to their well-defined, modular self-assembling architecture. Although progress has been made in understanding the complex effects that mutations may have on VLPs, nuanced understanding of the influence particle mutability has on quaternary structure has yet to be achieved. Here, we generate and compare the apparent fitness landscapes of two capsid geometries (T=3 and T=1 icosahedral) of the bacteriophage MS2 VLP. We find significant shifts in mutability at the symmetry interfaces of the T=1 capsid when compared to the wildtype T=3 assembly. Furthermore, we use the generated landscapes to benchmark the performance of in silico mutational scanning tools in capturing the effect of missense mutation on complex particle assembly. Finding that predicted stability effects correlated relatively poorly with assembly phenotype, we used a combination of de novo features in tandem with in silico results to train machine learning algorithms for the classification of variant effects on assembly. Our findings not only reveal ways that assembly geometry affects the mutable landscape of a self-assembled particle, but also establish a template for the generation of predictive mutational models of self-assembled capsids using minimal empirical training data.


2021 ◽  
Vol 12 ◽  
Author(s):  
Umar Saeed ◽  
Zahra Zahid Piracha ◽  
Hyeonjoong Kwon ◽  
Jumi Kim ◽  
Fadia Kalsoom ◽  
...  

We recently reported that the PPIase Par14 and Par17 encoded by PIN4 upregulate HBV replication in an HBx-dependent manner by binding to conserved arginine–proline (RP) motifs of HBx. HBV core protein (HBc) has a conserved 133RP134 motif; therefore, we investigated whether Par14/Par17 bind to HBc and/or core particles. Native agarose gel electrophoresis (NAGE) and immunoblotting and co-immunoprecipitation were used. Chromatin immunoprecipitation from HBV-infected HepG2-hNTCP-C9 cells was performed. NAGE and immunoblotting revealed that Par14/Par17 bound to core particles and co-immunoprecipitation revealed that Par14/Par17 interacted with core particle assembly-defective, and dimer-positive HBc-Y132A. Thus, core particles and HBc interact with Par14/Par17. Par14/Par17 interacted with the HBc 133RP134 motif possibly via substrate-binding E46/D74 and E71/D99 motifs. Although Par14/Par17 dissociated from core particles upon heat treatment, they were detected in 0.2 N NaOH-treated opened-up core particles, demonstrating that Par14/Par17 bind outside and inside core particles. Furthermore, these interactions enhanced the stabilities of HBc and core particles. Like HBc-Y132A, HBc-R133D and HBc-R133E were core particle assembly-defective and dimer-positive, demonstrating that a negatively charged residue at position 133 cannot be tolerated for particle assembly. Although positively charged R133 is solely important for Par14/17 interactions, the 133RP134 motif is important for efficient HBV replication. Chromatin immunoprecipitation from HBV-infected cells revealed that the S19 and E46/D74 residues of Par14 and S44 and E71/D99 residues of Par17 were involved in recruitment of 133RP134 motif-containing HBc into cccDNA. Our results demonstrate that interactions of HBc, Par14/Par17, and cccDNA in the nucleus and core particle–Par14/Par17 interactions in the cytoplasm are important for HBV replication.


2021 ◽  
Author(s):  
Laura A. St Clair ◽  
Stephanie A. Mills ◽  
Elena Lian ◽  
Paul S. Soma ◽  
Aritra Nag ◽  
...  

During infection with dengue viruses (DENVs), the lipid landscape within host cells is significantly altered to assemble membrane platforms that support viral replication and particle assembly. Fatty acyl-CoAs are key intermediates in the biosynthesis of complex lipids that form these membranes. They also function as key signaling lipids in the cell. Here, we carried out loss of function studies on acyl-CoA thioesterases (ACOTs), a family of enzymes that hydrolyze fatty acyl-CoAs to free fatty acids and coenzyme A, to understand their influence on the lifecycle of DENVs. Loss of function of the type I ACOTs 1 (cytoplasmic) and 2 (mitochondrial) together significantly increased DENV serotype 2 (DENV2) viral replication and infectious particle release. However, isolated knockdown of mitochondrial ACOT2 significantly decreased DENV2 protein translation, genome replication, and infectious virus release. Furthermore, loss of ACOT7 function, a mitochondrial type II ACOT, similarly suppressed DENV2. As ACOT1 and ACOT2 are splice variants, these data suggest that location (cytosol and mitochondria, respectively) rather than function of these proteins may account for the differences in DENV2 infection phenotype. Additionally, loss of mitochondrial ACOT2 and ACOT7 expression also altered the expression of several ACOTs located in multiple organelle compartments within the cell highlighting a complex relationship between ACOTs in the DENV2 virus lifecycle.


mBio ◽  
2021 ◽  
Author(s):  
Alice Duchon ◽  
Steven Santos ◽  
Jianbo Chen ◽  
Matthew Brown ◽  
Olga A. Nikolaitchik ◽  
...  

To generate infectious virions, HIV-1 must package its full-length RNA as the genome during particle assembly. HIV-1 Gag:RNA interactions mediate genome packaging, but the mechanism remains unclear.


Nano Energy ◽  
2021 ◽  
pp. 106748
Author(s):  
Jing He ◽  
Xiaotong Zheng ◽  
Zhiwen Zheng ◽  
Degang Kong ◽  
Kai Ding ◽  
...  

2021 ◽  
Author(s):  
Bayleigh E. Benner ◽  
James W. Bruce ◽  
Jacob R. Kentala ◽  
Magdalena Murray ◽  
Jordan T. Becker ◽  
...  

HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding while GP binds Gag to deliver the essential virion enzymes Protease, Reverse Transcriptase, and Integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (∼1:20), dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event occurring in gag-pol mRNAs. Herein we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ∼3-fold in virions relative to cells, with viral infectivity better maintained at subphysiological levels of GP compared to when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in cis ( i.e., from the same gag-pol mRNA) relative to trans, suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to trans -delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taken together, we propose a “weighted Goldilocks” scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies. Importance HIV-1 infectivity requires incorporation of the Gag-Pol (GP) precursor polyprotein into virions during the process of virus particle assembly. Mechanisms dictating GP incorporation into assembling virions are poorly defined, with GP levels in virions traditionally thought to solely reflect relative levels of Gag and GP expressed in cells; dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event that occurs in gag-pol mRNAs. Herein we provide experimental support for a “weighted Goldilocks” scenario for GP incorporation, wherein the virus exploits both random and non-random mechanisms to buffer infectivity over a wide range of GP expression levels. These mechanistic data are relevant to ongoing efforts to develop antiviral strategies targeting PRF frequency and/or HIV-1 virion maturation.


2021 ◽  
Author(s):  
Sophia C. Ren ◽  
Shefah A. Qazi ◽  
Brian Towell ◽  
Joseph CY Wang ◽  
Suchetana Mukhopadhyay

ABSTRACTAlphaviruses are enveloped viruses that are transmitted by an arthropod vector to vertebrate hosts. Alphaviruses have glycoprotein spikes on their particle surface which are essential for viral entry. Each of the 80 spikes on the surface of an alphavirus particle consists of a trimer of E2-E1 heterodimers. Two types of interactions make up the spikes: (1) interactions between E2 and E1 of the same heterodimer called intra-dimer contacts, and (2) inter-dimer interactions between E2 of one heterodimer and E1 of the adjacent heterodimer (called E1’). We hypothesized that the inter-dimer interactions are essential for trimerization of the E2-E1 heterodimers into a functional spike. In this work, we made a mutant virus where we replaced six inter-dimeric residues in Sindbis virus (WT SINV) with those from Chikungunya virus (CHIKV); the mutant is called CPB. CPB grew slower and to lower levels than WT SINV in mammalian cells, but not mosquito cells. When CPB virus was purified from mammalian cells, particles showed reduced amounts of glycoproteins relative to capsid protein, and defects in particle morphology compared to mosquito cells. CPB transported glycoproteins to the plasma membrane in similar amounts to WT SINV in mammalian cells. Two revertants, E2-H333N and E1-S247L, restored particle assembly to different degrees. The viruses were visualized by cryo-EM. We determined that the spikes of CPB had a different conformation than WT SINV or the revertants. We conclude that the inter-dimer mutant, CPB, has host-dependent defects in spike trimerization and/or particle budding in mammalian cells.IMPORTANCEAlphaviruses, which can cause disease when spread to humans by mosquitoes, have been classified as an emerging pathogen with a global distribution. The spikes on the surface of the alphavirus particle are absolutely required for the virus to enter a new host cell and initiate an infection. Using a structure-guided approach, we made a mutant virus that alters spike assembly in mammalian cells but not mosquito cells. This is important because it identifies a region in the spike that could be a target for antiviral drug design.


Sign in / Sign up

Export Citation Format

Share Document