Faculty Opinions recommendation of Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice.

Author(s):  
Heinz Feldmann
2015 ◽  
Vol 9 (12) ◽  
pp. e0004259 ◽  
Author(s):  
Marko Zivcec ◽  
Maureen G. Metcalfe ◽  
César G. Albariño ◽  
Lisa W. Guerrero ◽  
Scott D. Pegan ◽  
...  

2015 ◽  
Vol 89 (11) ◽  
pp. 5957-5967 ◽  
Author(s):  
Stephanie Devignot ◽  
Eric Bergeron ◽  
Stuart Nichol ◽  
Ali Mirazimi ◽  
Friedemann Weber

ABSTRACTCrimean-Congo hemorrhagic fever virus(CCHFV; genusNairovirus) is an extremely pathogenic member of theBunyaviridaefamily. Since handling of the virus requires a biosafety level 4 (BSL-4) facility, little is known about pathomechanisms and host interactions. Here, we describe the establishment of a transcriptionally competent virus-like particle (tc-VLP) system for CCHFV. Recombinant polymerase (L), nucleocapsid protein (N) and a reporter minigenome expressed in human HuH-7 cells resulted in formation of transcriptionally active nucleocapsids that could be packaged by coexpressed CCHFV glycoproteins into tc-VLPs. The tc-VLPs resembled authentic virus particles in their protein composition and neutralization sensitivity to anti-CCHFV antibodies and could recapitulate all steps of the viral replication cycle. Particle attachment, entry, and primary transcription were modeled by infection of naive cells. The subsequent steps of genome replication, secondary transcription, and particle assembly and release can be obtained upon passaging the tc-VLPs on cells expressing CCHFV structural proteins. The utility of the VLP system was demonstrated by showing that the endonuclease domain of L is located around amino acid D693, as was predictedin silicoby B. Morin et al. (PLoS Pathog 6:e1001038, 2010,http://dx.doi.org/10.1371/journal.ppat.1001038). The tc-VLP system will greatly facilitate studies and diagnostics of CCHFV under non-BSL-4 conditions.IMPORTANCECrimean-Congo hemorrhagic fever virus (CCHFV) is an extremely virulent pathogen of humans. Since the virus can be handled only at the highest biosafety level, research is restricted to a few specialized laboratories. We developed a plasmid-based system to produce virus-like particles with the ability to infect cells and transcribe a reporter genome. Due to the absence of viral genes, the virus-like particles are unable to spread or cause disease, thus allowing study of aspects of CCHFV biology under relaxed biosafety conditions.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 72
Author(s):  
Merve Kalkan-Yazıcı ◽  
Mehmet Ziya Doymaz

Hazara virus (HAZV), a tick-borne agent of the nairoviruses, is closely related to Crimean–Congo hemorrhagic fever virus (CCHFV). Hazara virus has not been reported as a pathogen for humans and can be studied under BSL-2 conditions, whereas CCHFV causes severe hemorrhagic diseases, with up to 30% mortality rate in humans, and requires BSL-4 facilities to be handled. Serologic and phylogenetic similarities between the two viruses would therefore be an interesting area of research. In this study, we evaluated the immunological similarities between these two viruses using nucleocapsid protein as a model. Here, we evaluated cross-reactivity between CCHFV and HAZV rNP, which forms virus-like particles when expressed in Pichia pastoris. In Western blot assays using CCHFV-infected human and immunized mice and rabbit sera, cross-reactions were detected between the nucleoproteins of both viruses. Virus-like particles were visualized by transmission electron microscopy (TEM) and monitored by dynamic light scattering (DLS). These results suggest that nucleocapsid proteins of HAZV and CCHFV share similarities regarding the antiviral humoral response in both species.


2019 ◽  
Vol 65 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Anne Rackow ◽  
Christa Ehmen ◽  
Ronald von Possel ◽  
Raquel Medialdea-Carrera ◽  
David Brown ◽  
...  

Abstract BACKGROUND The cellular surface molecule HsTOSO/FAIM3/HsFcμR has been identified as an IgM-specific Fc receptor expressed on lymphocytes. Here, we show that its extracellular immunoglobulin-like domain (HsFcμR-Igl) specifically binds to IgM/antigen immune complexes (ICs) and exploit this property for the development of novel detection systems for IgM antibodies directed against Crimean-Congo hemorrhagic fever virus (CCHFV) and Zika virus (ZIKV). METHODS His-tagged HsFcμR-Igl was expressed in Escherichia coli and purified by affinity chromatography, oxidative refolding, and size-exclusion chromatography. Specific binding of HsFcμR-Igl to IgM/antigen ICs was confirmed, and 2 prototypic ELISAs for the detection of anti-CCHFV and anti-ZIKV IgM antibodies were developed. Thereby, patient sera and virus-specific recombinant antigens directly labeled with horseradish peroxidase (HRP) were coincubated on HsFcμR-Igl-coated ELISA plates. Bound ICs were quantified by measuring turnover of a chromogenic HRP substrate. RESULTS Assay validation was performed using paired serum samples from 15 Kosovar patients with a PCR-confirmed CCHFV infection and 28 Brazilian patients with a PCR-confirmed ZIKV infection, along with a panel of a priori CCHFV/ZIKV-IgM-negative serum samples. Both ELISAs were highly reproducible. Sensitivity and specificity were comparable with or even exceeded in-house gold standard testing and commercial kits. Furthermore, latex beads coated with HsFcμR-Igl aggregated upon coincubation with an IgM-positive serum and HRP-labeled antigen but not with either component alone, revealing a potential for use of HsFcμR-Igl as a capture molecule in aggregation-based rapid tests. CONCLUSIONS Recombinant HsFcμR-Igl is a versatile capture molecule for IgM/antigen ICs of human and animal origin and can be applied for the development of both plate- and bead-based serological tests.


2021 ◽  
Vol 290 ◽  
pp. 114075
Author(s):  
Stephen Balinandi ◽  
Claudia von Brömssen ◽  
Alex Tumusiime ◽  
Jackson Kyondo ◽  
Hyesoo Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document