cynomolgus monkeys
Recently Published Documents


TOTAL DOCUMENTS

2261
(FIVE YEARS 247)

H-INDEX

77
(FIVE YEARS 5)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Sebastian Peters ◽  
Eva Wirkert ◽  
Sabrina Kuespert ◽  
Rosmarie Heydn ◽  
Siw Johannesen ◽  
...  

The capability of the adult central nervous system to self-repair/regenerate was demonstrated repeatedly throughout the last decades but remains in debate. Reduced neurogenic niche activity paralleled by a profound neuronal loss represents fundamental hallmarks in the disease course of neurodegenerative disorders. We and others have demonstrated the endogenous TGFβ system to represent a potential pathogenic participant in disease progression, of amyotrophic lateral sclerosis (ALS) in particular, by generating and promoting a disequilibrium of neurodegenerative and neuroregenerative processes. The novel human/primate specific LNA Gapmer Antisense Oligonucleotide “NVP-13”, targeting TGFBR2, effectively reduced its expression and lowered TGFβ signal transduction in vitro and in vivo, paralleled by boosting neurogenic niche activity in human neuronal progenitor cells and nonhuman primate central nervous system. Here, we investigated NVP-13 in vivo pharmacology, safety, and tolerability following repeated intrathecal injections in nonhuman primate cynomolgus monkeys for 13 weeks in a GLP-toxicology study approach. NVP-13 was administered intrathecally with 1, 2, or 4 mg NVP-13/animal within 3 months on days 1, 15, 29, 43, 57, 71, and 85 in the initial 13 weeks. We were able to demonstrate an excellent local and systemic tolerability, and no adverse events in physiological, hematological, clinical chemistry, and microscopic findings in female and male Cynomolgus Monkeys. Under the conditions of this study, the no observed adverse effect level (NOAEL) is at least 4 mg/animal NVP-13.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Huanhuan Jia ◽  
Meili Chen ◽  
Yanzhen Cai ◽  
Xiaoling Luo ◽  
Gang Hou ◽  
...  

Abstract Background Ankylosing spondylitis is a progressive, disabling joint disease that affects millions worldwide. Given its unclear etiology, studies of ankylosing spondylitis relied heavily on drug-induced or transgenic rodent models which retain only partial clinical features. There is obviously a lack of a useful disease model to conduct comprehensive mechanistic studies. Methods We followed a group of cynomolgus monkeys having joint lesions reported of spinal stiffness for 2 years by conducting hematological testing, radiographic examination, family aggregation analysis, pathological analysis, and genetic testing. Results The results confirmed that these diseased animals suffered from spontaneous ankylosing spondylitis with clinical features recapitulating human ankylosing spondylitis disease progression, manifested by pathological changes and biochemical indicators similar to that of ankylosing spondylitis patients. Conclusion The study offers a promising non-human primate model for spontaneous ankylosing spondylitis which may serve as an excellent substitute for its pre-clinical research.


2021 ◽  
Author(s):  
Xianglong Zhang ◽  
Ying Lei ◽  
Oliver Homann ◽  
Marina Stolina ◽  
Songli Wang ◽  
...  

Obesity and type 2 diabetes (T2D) remain major global healthcare challenges and developing therapeutics necessitate using nonhuman primate models. Here, we present transcriptomic and proteomic analyses of all the major organs of cynomolgus monkeys with spontaneous obesity or T2D in comparison to healthy controls. Molecular changes occur predominantly in the adipose tissues of individuals with obesity, while extensive expression perturbations among T2D individuals are observed in many tissues, such as the liver, kidney, brain, and heart. Immune response-related pathways are upregulated in obesity and T2D, whereas metabolism and mitochondrial pathways are downregulated. Incorporating human single-cell RNA sequencing findings corroborates the role of macrophages and monocytes in obesity. Moreover, we highlight some potential therapeutic targets including SLC2A1 and PCSK1 in obesity as well as SLC30A8 and SLC2A2 in T2D. Our findings provide insights into tissue-specific molecular foundations of obesity and T2D and reveal the mechanistic links between these two metabolic disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Min Choi ◽  
Hi Jung Park ◽  
Eun A. Choi ◽  
Kyeong Cheon Jung ◽  
Jae Il Lee

AbstractCirculating CD4+CD8+ double-positive (DP) T cells are associated with a variety of disease states. However, unlike conventional T cells, the composition of this population is poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the composition and characteristics of the DP T cell population circulating in the peripheral blood of cynomolgus monkeys. We found that circulating DP T cells not only contain a large number of naïve cells, but also comprise a heterogeneous population (CD4 CTL-, Eomes+ Tr1-, Th2-, Th17-, Tfh-, Treg-, CD8 CTL-, and innate-like cells) with multiple potential functions. Flow cytometry analysis revealed that a substantial number of the naïve DP T cells expressed CD8αβ, as well as CD8αα, along with high expression of CD31. Moreover, the CD4hiCD8lo and CD4hiCD8hi populations, which express high levels of the CD4 coreceptor, comprised subsets characterized by helper and regulatory functions, some of which also exhibited cytotoxic functions. By contrast, the CD4loCD8hi population with high CD8 coreceptor expression comprised a subset characterized by CD8 CTL- and innate-like properties. Taken together, the data show that scRNA-seq analysis identified a more diverse subset of the circulating DP cells than is currently known, despite this population being very small.


Author(s):  
Muriel Bellot ◽  
C. Marc Luetjens ◽  
Morten Bagger ◽  
Courtney Horvath ◽  
Esther Sutter ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document