biosafety level
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 98)

H-INDEX

19
(FIVE YEARS 7)

Author(s):  
Luis A. Caldera-Crespo ◽  
Michael J. Paidas ◽  
Sabita Roy ◽  
Carl I. Schulman ◽  
Norma Sue Kenyon ◽  
...  

COVID-19 is the most consequential pandemic of the 21st century. Since the earliest stage of the 2019-2020 epidemic, animal models have been useful in understanding the etiopathogenesis of SARS-CoV-2 infection and rapid development of vaccines/drugs to prevent, treat or eradicate SARS-CoV-2 infection. Early SARS-CoV-1 research using immortalized in-vitro cell lines have aided in understanding different cells and receptors needed for SARS-CoV-2 infection and, due to their ability to be easily manipulated, continue to broaden our understanding of COVID-19 disease in in-vivo models. The scientific community determined animal models as the most useful models which could demonstrate viral infection, replication, transmission, and spectrum of illness as seen in human populations. Until now, there have not been well-described animal models of SARS-CoV-2 infection although transgenic mouse models (i.e. mice with humanized ACE2 receptors with humanized receptors) have been proposed. Additionally, there are only limited facilities (Biosafety level 3 laboratories) available to contribute research to aid in eventually exterminating SARS-CoV-2 infection around the world. This review summarizes the most successful animal models of SARS-CoV-2 infection including studies in Non-Human Primates (NHPs) which were found to be susceptible to infection and transmitted the virus similarly to humans (e.g., Rhesus macaques, Cynomolgus, and African Green Monkeys), and animal models that do not require Biosafety level 3 laboratories (e.g., Mouse Hepatitis Virus models of COVID-19, Ferret model, Syrian Hamster model). Balancing safety, mimicking human COVID-19 and robustness of the animal model, the Murine Hepatitis Virus-1 Murine model currently represents the most optimal model for SARS-CoV-2/COVID19 research. Exploring future animal models will aid researchers/scientists in discovering the mechanisms of SARS-CoV-2 infection and in identifying therapies to prevent or treat COVID-19.


2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Tautvydas Shuipys ◽  
Naim Montazeri

Murine hepatitis virus (MHV) is a non-human pathogen betacoronavirus that is evolutionarily and structurally related to the human pathogenic viruses SARS-CoV, MERS-CoV, and SARS-CoV-2. However, unlike the human SARS and MERS viruses, MHV requires a biosafety level 2 laboratory for propagating and safe handling, making it a potentially suitable surrogate virus. Despite this utility, few papers discussed the propagation and quantification of MHV using cell lines readily available in biorepositories making their implementations not easily reproducible. This article provides protocols for propagating and quantifying MHV-A59 using the recommended NCTC clone 1469 and clone 929 cell lines from American Type Culture Collection (ATCC). More specifically, the methods detail reviving cells, routine cell passaging, preparing freeze stocks, infection of NCTC clone 1469 with MHV and subsequent harvesting, and plaque assay quantification of MHV using NCTC clone 929 cells. Using these protocols, a BSL-2 laboratory equipped for cell culture work would generate at least 6.0 log plaque-forming units (PFU) per mL of MHV lysate and provide an optimized overlay assay using either methylcellulose or agarose as overlays for the titration of infectious virus particles. The protocols described here are intended to be utilized for persistence and inactivation studies of coronaviruses.


Author(s):  
I. Yu. Torshin ◽  
O. A. Gromova ◽  
V. A. Maksimov

Hepatoprotectors and prebiotic molecules that promote the growth of intestinal flora differ significantly in their effects on different representatives of the human microbiome. This work presents the results of a comparative chemomicrobiomic analysis of ornithine and reference molecules (S-ademetionine, ursodeoxycholic acid, lactulose, and fructose). For each of the studied molecules, estimates of the values of the area under the growth curve were obtained for a representative sample of human microbiota, which included 38 commensal bacteria (including bifidobacteria and lactobacilli) and the values of the minimum inhibitory concentrations (MIC) for 152 strains of pathogenic bacteria. It has been shown that ornithine, to a lesser extent than the reference molecules, stimulates the growth of pathogenic bacteria of the genera Aspergillus, Klebsiella, Pseudomonas, Staphylococcus and Candida fungi. Ornithine is also less likely to stimulate the growth of more aggressive bacteria (Biosafety Level 2) and to a greater extent less aggressive bacteria (Biosafety Level 1). By stimulating butyric and other short-chain fatty acid-producing microorganisms, ornithine can improve the profile of gut microbiota.


Author(s):  
Lucie Fénéant* ◽  
Bianca Bodmer* ◽  
Thomas C. Mettenleiter ◽  
Allison Groseth ◽  
Thomas Hoenen

2021 ◽  
Author(s):  
Johnny Malicoat ◽  
Senthamizharasi Manivasagam ◽  
Sonia Zuñiga ◽  
Isabel Sola ◽  
Dianne McCabe ◽  
...  

Research activities with infectious severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) are currently permitted only under biosafety level 3 (BSL3) containment. Here, we report the development of a single-cycle infectious SARS-CoV-2 virus replicon particle (VRP) system with a luciferase and green fluorescent protein (GFP) dual reporter that can be safely handled in BSL2 laboratories to study SARS-CoV-2 biology. The Spike (S) gene of SARS-CoV-2 encodes for the envelope glycoprotein, which is essential for mediating infection of new host cells. Through deletion and replacement of this essential S gene with a luciferase and GFP dual reporter, we have generated a conditional SARS-CoV-2 mutant (ΔS-VRP) that produces infectious particles only in cells expressing a viral envelope glycoprotein of choice. Interestingly, we observed more efficient production of infectious particles in cells expressing vesicular stomatitis virus (VSV) glycoprotein G (ΔS-VRP(G)) as compared to cells expressing other viral glycoproteins including S. We confirmed that infection from ΔS-VRP(G) is limited to a single round and can be neutralized by anti-VSV serum. In our studies with ΔS-VRP(G), we observed robust expression of both luciferase and GFP reporters in various human and murine cell types, demonstrating that a broad variety of cells can support intracellular replication of SARS-CoV-2. In addition, treatment of ΔS-VRP(G) infected cells with anti-CoV drugs remdesivir (nucleoside analog) or GC376 (CoV 3CL protease inhibitor) resulted in a robust decrease in both luciferase and GFP expression in a drug-dose and cell-type dependent manner. Taken together, we have developed a single-cycle infectious SARS-CoV-2 VRP system that serves as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high throughput screening of antiviral drugs under BSL2 containment. Importance Due to the highly contagious nature of SARS-CoV-2 and the lack of immunity in the human population, research on SARS-CoV-2 has been restricted to biosafety level 3 laboratories. This has greatly limited participation of the broader scientific community in SARS-CoV-2 research and thus has hindered the development of vaccines and antiviral drugs. By deleting the essential Spike gene in the viral genome, we have developed a conditional mutant of SARS-CoV-2 with luciferase and fluorescent reporters, which can be safely used under biosafety level 2 conditions. Our single-cycle infectious SARS-CoV-2 virus replicon system can serve as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high throughput screening of antiviral drugs under BSL2 containment.


2021 ◽  
Author(s):  
Christopher M Roundy ◽  
Sarah A. Hamer ◽  
Italo B. Zecca ◽  
Edward B. Davila ◽  
Lisa D. Auckland ◽  
...  

Abstract Background:The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a pandemic of coronavirus disease (COVID-19), which continues to cause infections and mortality worldwide. SARS-CoV-2 is transmitted primarily via the respiratory route and has experimentally been found to be stable on surfaces for multiple days. Flies (Diptera) and other arthropods mechanically transmit several pathogens, including turkey coronavirus. A previous experimental study demonstrated house flies, Musca domestica, can mechanically transmit SARS-CoV-2, but the ability of flies in general to acquire and deposit this virus in natural settings has not been explored. The purpose of this study was to explore the possibility of mechanical transmission of SARS-CoV-2 by peridomestic insects and their potential as a xenosurveillance tool for detection of the virus.Methods:In order to optimize chances of viral detection, flies were trapped in homes where at least one confirmed human COVID-19 case(s) resided. Sticky and liquid baited fly traps were deployed inside and outside of the homes of SARS-CoV-2 human cases in Brazos, Bell, and Montgomery Counties, from June to September 2020. Flies from sticky traps were identified, pooled by taxa, homogenized, and tested for the presence of SARS-CoV-2 RNA using qRT-PCR. Liquid traps were drained, and the collected fluid similarly tested after RNA concentration. Experimental viral detection pipeline and viral inactivation were confirmed in a Biosafety Level 3 lab. As part of a separate ongoing study, companion animals in the home were sampled and tested for SARS-CoV-2 on the same day of insect trap deployment.Results:We processed the contents of 133 insect traps from 44 homes, which contained over 1,345 individual insects of 11 different Diptera families and Blattodea.These individuals were grouped into 243 pools, and all tested negative for SARS-CoV-2 RNA. Dead flies exposed to SARS-CoV-2 in a BSL3 lab were processed using the same methods and viral RNA was detected by RT-PCR. Fourteen traps in seven homes were deployed on the day that cat or dog samples tested positive for SARS-CoV-2 RNA by nasal, oral, body, or rectal samples.Conclusions:This study presents evidence that biting and non-biting flies are not likely to contribute to mechanical transmission of SARS-CoV-2 or be useful in xenosurveillance for SARS-CoV-2.


2021 ◽  
Author(s):  
Austin Blake Featherstone ◽  
Sapna Chitlapilly Dass

Meat processing plants have been at the center of the SARS-CoV-2 pandemic. There are several factors that contribute to the persistence of SARS-CoV-2 in meat processing plants and one of the factors is the formation of a multi-species biofilm with virus. Biofilm can act as a reservoir in protecting, harboring, and dispersing SARS-CoV-2 from biofilm to the meat processing facility environment. We used Murine Hepatitis Virus (MHV) as a surrogate for SARS-CoV-2 virus and meat processing facility drain samples to develop mixed-species biofilms on commonly found materials in processing facilities (Stainless-Steel (SS), PVC and tiles). The results showed that MHV was able to integrate into the environmental biofilm and survived for a period of 5 days at 7C. There was no significate difference between the viral-environmental biofilm biovolumes developed on different materials SS, PVC, and tiles. There was a 2-fold increase in the virus-environmental biofilm biovolume when compared to environmental biofilm by itself. These results indicate a complex virus-environmental biofilm interaction which is providing enhanced protection for the survival of viral particles with the environmental biofilm community.


2021 ◽  
Vol 5 (2) ◽  
pp. 522-535
Author(s):  
Aulia Jauhari Rakhman ◽  
Sjahrul Meizar Nasri

Introduction: Protection of personnel in microbiological testing laboratories should be conducted. One of the efforts that can be used for preventive action is the determination of the biosafety level. This study was conducted with the aim of knowing how important the biosafety level is seen from the readiness level of laboratory personnel regarding knowledge, training, and competency assessment of laboratory personnel. Moreover, this study was also based on the application of biological risk assessment and the planned biosafety implementation program. Method: The sampling method used was secondary data with document review and data recording from the implementation of activities in the microbiology laboratory. Meanwhile, the primary data collection was done through in-depth interviews with respondents using questionnaires and direct interviews. Result: The results of data collection and data processing showed that 74% of laboratory personnel had the appropriate competence in carrying out the assessment by determining the biosafety level. This was supported by the biosafety program which might be planned and implemented with laboratory readiness. This had a percentage of 73% in terms of biological risk assessment and laboratory facilities. Conclusion: Determination of biosafety level is important for personnel who is working in dangerous facilities which is exposed to microbiological agents such as bacteria, viruses, fungi, and other microbiological products. This is because, determining the biosafety level not only protects laboratory personnel, but also the environment from biological hazards.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raveen Rathnasinghe ◽  
Robert F. Karlicek ◽  
Michael Schotsaert ◽  
Mattheos Koffas ◽  
Brigitte L. Arduini ◽  
...  

AbstractParticulate respirators such as N95s are an essential component of personal protective equipment (PPE) for front-line workers. This study describes a rapid and effective UVC irradiation system that would facilitate the safe re-use of N95 respirators and provides supporting information for deploying UVC for decontamination of SARS-CoV-2 during the COVID-19 pandemic. To assess the inactivation potential of the proposed UVC germicidal device as a function of time by using 3 M 8211-N95 particulate respirators inoculated with SARS-CoV-2. A germicidal UVC device to deliver tailored UVC dose was developed and test coupons (2.5 cm2) of the 3 M-N95 respirator were inoculated with 106 plaque-forming units (PFU) of SARS-CoV-2 and were UV irradiated. Different exposure times were tested (0–164 s) by fixing the distance between the lamp and the test coupon to 15.2 cm while providing an exposure of at least 5.43 mWcm−2. Primary measure of outcome was titration of infectious virus recovered from virus-inoculated respirator test coupons after UVC exposure. Other measures included the method validation of the irradiation protocol, using lentiviruses (biosafety level-2 agent) and establishment of the germicidal UVC exposure protocol. An average of 4.38 × 103 PFU ml−1 (SD 772.68) was recovered from untreated test coupons while 4.44 × 102 PFU ml−1 (SD 203.67), 4.00 × 102 PFU ml−1 (SD 115.47), 1.56 × 102 PFU ml−1 (SD 76.98) and 4.44 × 101 PFU ml−1 (SD 76.98) was recovered in exposures 2, 6, 18 and 54 s per side respectively. The germicidal device output and positioning was monitored and a minimum output of 5.43 mW cm−2 was maintained. Infectious SARS-CoV-2 was not detected by plaque assays (minimal level of detection is 67 PFU ml−1) on N95 respirator test coupons when irradiated for 120 s per side or longer suggesting 3.5 log reduction in 240 s of irradiation, 1.3 J cm−2. A scalable germicidal UVC device to deliver tailored UVC dose for rapid decontamination of SARS-CoV-2 was developed. UVC germicidal irradiation of N95 test coupons inoculated with SARS-CoV-2 for 120 s per side resulted in 3.5 log reduction of virus. These data support the reuse of N95 particle-filtrate apparatus upon irradiation with UVC and supports use of UVC-based decontamination of SARS-CoV-2 during the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document