scholarly journals Allitridi Inhibits Multiple Cardiac Potassium Channels Expressed in HEK 293 Cells

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51550 ◽  
Author(s):  
Xiao-Hui Xu ◽  
Hai-Ying Sun ◽  
Yan-Hui Zhang ◽  
Wei Wu ◽  
Kui-Hao Chen ◽  
...  
2007 ◽  
Vol 74 (11) ◽  
pp. 1596-1607 ◽  
Author(s):  
Qiang Tang ◽  
Man-Wen Jin ◽  
Ji-Zhou Xiang ◽  
Min-Qing Dong ◽  
Hai-Ying Sun ◽  
...  

2015 ◽  
Vol 122 (3) ◽  
pp. 571-584 ◽  
Author(s):  
Lei Yang ◽  
Hui Liu ◽  
Hai-Ying Sun ◽  
Gui-Rong Li

Abstract Background: Propofol is widely used clinically for the induction and maintenance of anesthesia. Clinical case reports have shown that propofol has an antiatrial tachycardia/fibrillation effect; however, the related ionic mechanisms are not fully understood. The current study investigates the effects of propofol on human cardiac potassium channels. Methods: The whole cell patch voltage clamp technique was used to record transient outward potassium current (Ito) and ultrarapidly activating delayed rectifier potassium current (IKur) in human atrial myocytes and hKv1.5, human ether-à-go-go-related gene (hERG), and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells. Current clamp mode was used to record action potentials in human atrial myocytes. Results: In human atrial myocytes, propofol inhibited Ito in a concentration-dependent manner (IC50 = 33.5 ± 2.0 μM for peak current, n = 6) by blocking open channels without affecting the voltage-dependent kinetics or the recovery time constant; propofol decreased IKur (IC50 = 35.3 ± 1.9 μM, n = 6) in human atrial myocytes and inhibited hKv1.5 current expressed in HEK 293 cells by preferentially binding to the open channels. Action potential duration at 90% repolarization was slightly prolonged by 30 μM propofol in human atrial myocytes. In addition, propofol also suppressed hERG and hKCNQ1/hKCNE1 channels expressed in HEK 293 cells. Conclusion: Propofol inhibits multiple human cardiac potassium channels, including human atrial Ito and IKur, as well as hKv1.5, hERG, and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells, and slightly prolongs human atrial action potential duration, which may contribute to the antiatrial tachycardia/fibrillation effects observed in patients who receive propofol.


2016 ◽  
Vol 104 ◽  
pp. 61-69 ◽  
Author(s):  
Hui Liu ◽  
Lei Yang ◽  
Kui-Hao Chen ◽  
Hai-Ying Sun ◽  
Man-Wen Jin ◽  
...  

Author(s):  
Yu-Qiang Liu ◽  
Wen-Xian Huang ◽  
Russell M. Sanchez ◽  
Jia-Wei Min ◽  
Jiang-Jian Hu ◽  
...  

Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

2010 ◽  
Vol 35 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lina Ji ◽  
Abha Chauhan ◽  
Ved Chauhan

Sign in / Sign up

Export Citation Format

Share Document