scholarly journals Insight Derived from Molecular Dynamics Simulations into Molecular Motions, Thermodynamics and Kinetics of HIV-1 gp120

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104714 ◽  
Author(s):  
Peng Sang ◽  
Li-Quan Yang ◽  
Xing-Lai Ji ◽  
Yun-Xin Fu ◽  
Shu-Qun Liu
2012 ◽  
Vol 102 (3) ◽  
pp. 457a ◽  
Author(s):  
Yanxin Liu ◽  
Johan Strumpfer ◽  
Peter L. Freddolino ◽  
Martin Gruebele ◽  
Klaus Schulten

Author(s):  
Phillip Mark Rodger ◽  
Caroline Montgomery ◽  
Giovanni Costantini ◽  
Alison Rodger

The formation and stability of diphenylalanine fibres are studied by combining molecular dynamics simulations with microscopy and spectroscopy experiments, quantitatively detailing their morphology, energetics and growth kinetics.


2002 ◽  
Vol 83 (2) ◽  
pp. 794-807 ◽  
Author(s):  
Joanna Trylska ◽  
Piotr Bała ◽  
Maciej Geller ◽  
Paweł Grochowski

2018 ◽  
Vol 115 (45) ◽  
pp. 11519-11524 ◽  
Author(s):  
Caitlin M. Quinn ◽  
Mingzhang Wang ◽  
Matthew P. Fritz ◽  
Brent Runge ◽  
Jinwoo Ahn ◽  
...  

The host factor protein TRIM5α plays an important role in restricting the host range of HIV-1, interfering with the integrity of the HIV-1 capsid. TRIM5 triggers an antiviral innate immune response by functioning as a capsid pattern recognition receptor, although the precise mechanism by which the restriction is imposed is not completely understood. Here we used an integrated magic-angle spinning nuclear magnetic resonance and molecular dynamics simulations approach to characterize, at atomic resolution, the dynamics of the capsid’s hexameric and pentameric building blocks, and the interactions with TRIM5α in the assembled capsid. Our data indicate that assemblies in the presence of the pentameric subunits are more rigid on the microsecond to millisecond timescales than tubes containing only hexamers. This feature may be of key importance for controlling the capsid’s morphology and stability. In addition, we found that TRIM5α binding to capsid induces global rigidification and perturbs key intermolecular interfaces essential for higher-order capsid assembly, with structural and dynamic changes occurring throughout the entire CA polypeptide chain in the assembly, rather than being limited to a specific protein-protein interface. Taken together, our results suggest that TRIM5α uses several mechanisms to destabilize the capsid lattice, ultimately inducing its disassembly. Our findings add to a growing body of work indicating that dynamic allostery plays a pivotal role in capsid assembly and HIV-1 infectivity.


2007 ◽  
Vol 93 (10) ◽  
pp. 3613-3626 ◽  
Author(s):  
Nadtanet Nunthaboot ◽  
Somsak Pianwanit ◽  
Vudhichai Parasuk ◽  
Jerry O. Ebalunode ◽  
James M. Briggs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document