scholarly journals Functional diversity of rhizosphere soil microbial communities in response to different tillage and crop residue retention in a double-cropping rice field

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233642
Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Xiaoping Xiao ◽  
Xiaochen Pan ◽  
Wenguang Tang ◽  
...  
2021 ◽  
Vol 49 (4) ◽  
pp. 12532
Author(s):  
Ali I. MALLANO ◽  
Xianli ZHAO ◽  
Yanling SUN ◽  
Guangpin JIANG ◽  
Huang CHAO

Continuous cropping systems are the leading cause of decreased soil biological environments in terms of unstable microbial population and diversity index. Nonetheless, their responses to consecutive peanut monocropping cycles have not been thoroughly investigated. In this study, the structure and abundance of microbial communities were characterized using pyrosequencing-based approach in peanut monocropping cycles for three consecutive years. The results showed that continuous peanut cultivation led to a substantial decrease in soil microbial abundance and diversity from initial cropping cycle (T1) to later cropping cycle (T3). Peanut rhizosphere soil had Actinobacteria, Protobacteria, and Gemmatimonadetes as the major bacterial phyla. Ascomycota, Basidiomycota were the major fungal phylum, while Crenarchaeota and Euryarchaeota were the most dominant phyla of archaea. Several bacterial, fungal and archaeal taxa were significantly changed in abundance under continuous peanut cultivation. Bacterial orders, Actinomycetales, Rhodospirillales and Sphingomonadales showed decreasing trends from T1>T2>T3. While, pathogenic fungi Phoma was increased and beneficial fungal taxa Glomeraceae decreased under continuous monocropping. Moreover, Archaeal order Nitrososphaerales observed less abundant in first two cycles (T1&T2), however, it increased in third cycle (T3), whereas, Thermoplasmata exhibit decreased trends throughout consecutive monocropping. Taken together, we have shown the taxonomic profiles of peanut rhizosphere communities that were affected by continuous peanut monocropping. The results obtained from this study pave ways towards a better understanding of the peanut rhizosphere soil microbial communities in response to continuous cropping cycles, which could be used as bioindicator to monitor soil quality, plant health and land management practices.


2011 ◽  
Vol 50 (No. 4) ◽  
pp. 141-148 ◽  
Author(s):  
J. Hofman ◽  
J. Švihálek ◽  
I. Holoubek

In our case study, we measured the functional diversity of the microbial communities of twelve soils from the small natural area to assess if this assay is suitable for routine monitoring of soil biological quality. We found the BIOLOG assay meets especially practical benefits in routine monitoring of soils being simple and quick assay. However, we confirmed the ambiguity about the most appropriate analysis of the BIOLOG multivariate data and about the best parameter, which can be derived from the assay. The different analyses of the data were examined and various parameters derived from the BIOLOG assay were comparatively used to contribute to the discussion of how the data should be evaluated. We showed that not-normalized raw absorbances or trapezoid areas should be used for calculation of diversity index if the inoculum was standardized. There was no single answer to what parameter provided more correct results in the multivariate statistical analysis. Evaluating at least one not-normalized (e.g. trapezoid area) and one normalized parameter (e.g. absorbances read in fixed AWCD) was strongly suggested keeping in mind that they reveal different information.


Sign in / Sign up

Export Citation Format

Share Document