scholarly journals Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252965
Author(s):  
Siti Ainun Marufa ◽  
Tsung-Hsun Hsieh ◽  
Jian-Chiun Liou ◽  
Hsin-Yung Chen ◽  
Chih-Wei Peng

We investigated the effects of intermittent theta-burst stimulation (iTBS) on locomotor function, motor plasticity, and axonal regeneration in an animal model of incomplete spinal cord injury (SCI). Aneurysm clips with different compression forces were applied extradurally around the spinal cord at T10. Motor plasticity was evaluated by examining the motor evoked potentials (MEPs). Long-term iTBS treatment was given at the post-SCI 5th week and continued for 2 weeks (5 consecutive days/week). Time-course changes in locomotor function and the axonal regeneration level were measured by the Basso Beattie Bresnahan (BBB) scale, and growth-associated protein (GAP)-43 expression was detected in brain and spinal cord tissues. iTBS-induced potentiation was reduced at post-1-week SCI lesion and had recovered by 4 weeks post-SCI lesion, except in the severe group. Multiple sessions of iTBS treatment enhanced the motor plasticity in all SCI rats. The locomotor function revealed no significant changes between pre- and post-iTBS treatment in SCI rats. The GAP-43 expression level in the spinal cord increased following 2 weeks of iTBS treatment compared to the sham-treatment group. This preclinical model may provide a translational platform to further investigate therapeutic mechanisms of transcranial magnetic stimulation and enhance the possibility of the potential use of TMS with the iTBS scheme for treating SCIs.

2019 ◽  
Vol 43 (5) ◽  
pp. 323-331
Author(s):  
Katarzyna Leszczyńska ◽  
Agnieszka Wincek ◽  
Wojciech Fortuna ◽  
Juliusz Huber ◽  
Jagoda Łukaszek ◽  
...  

Purpose: To evaluate the short- and long-term effectiveness of repetitive transcranial magnetic stimulation with parameters based on results of comparative neurophysiological studies in patients with incomplete spinal cord injury. Results may help to understand mechanisms responsible for regeneration of the incomplete spinal cord after injury. Methods: Repetitive transcranial magnetic stimulation sessions (three to five sessions per month for not less than 5 months) to 15 patients with C4-Th2 incomplete spinal cord injury were applied with individually designed parameters. One session consisted of bilateral stimulation of the primary motor cortex (for 10 min each with 800 stimuli in 2-s lasting trains and the inter-train intervals of 28 s) with frequency at 20–22 Hz and stimulus strength that was 70%–80% of the resting motor threshold (0.84–0.96 T). Recordings of surface electromyography at rest and during the attempt of maximal muscle contractions and motor evoked potentials were performed from abductor pollicis brevis and tibialis anterior muscles bilaterally. Amplitude parameters of surface electromyography and motor evoked potentials were used as outcomes. All neurophysiological tests were comparatively applied before and after treatment. Results: Decrease in surface electromyography amplitudes recorded at rest from abductor pollicis brevis (p = 0.009), increase in surface electromyography amplitudes during maximal contraction of abductor pollicis brevis (p = 0.03) and increase in motor evoked potential parameters recorded from abductor pollicis brevis (p = 0.04) were found. Conclusion: Proposed repetitive transcranial magnetic stimulation algorithm reduced the increased muscle tension in upper extremity muscles, improved the function of upper extremity muscle motor units and slightly improved the transmission of efferent neural impulses within spinal pathways. Besides functional recovery in descending spinal pathways, repetitive transcranial magnetic stimulation may also inhibit inevitable pathological changes in nerves.


Sign in / Sign up

Export Citation Format

Share Document