scholarly journals A Novel N-Tetrasaccharide in Patients with Congenital Disorders of Glycosylation, Including Asparagine-Linked Glycosylation Protein 1, Phosphomannomutase 2, and Mannose Phosphate Isomerase Deficiencies

2016 ◽  
Vol 62 (1) ◽  
pp. 208-217 ◽  
Author(s):  
Wenyue Zhang ◽  
Philip M James ◽  
Bobby G Ng ◽  
Xueli Li ◽  
Baoyun Xia ◽  
...  

Abstract BACKGROUND Primary deficiencies in mannosylation of N-glycans are seen in a majority of patients with congenital disorders of glycosylation (CDG). We report the discovery of a series of novel N-glycans in sera, plasma, and cultured skin fibroblasts from patients with CDG having deficient mannosylation. METHOD We used LC-MS/MS and MALDI-TOF-MS analysis to identify and quantify a novel N-linked tetrasaccharide linked to the protein core, an N-tetrasaccharide (Neu5Acα2,6Galβ1,4-GlcNAcβ1,4GlcNAc) in plasma, serum glycoproteins, and a fibroblast lysate from patients with CDG caused by ALG1 [ALG1 (asparagine-linked glycosylation protein 1), chitobiosyldiphosphodolichol β-mannosyltransferase], PMM2 (phosphomannomutase 2), and MPI (mannose phosphate isomerase). RESULTS Glycoproteins in sera, plasma, or cell lysate from ALG1-CDG, PMM2-CDG, and MPI-CDG patients had substantially more N-tetrasaccharide than unaffected controls. We observed a >80% decline in relative concentrations of the N-tetrasaccharide in MPI-CDG plasma after mannose therapy in 1 patient and in ALG1-CDG fibroblasts in vitro supplemented with mannose. CONCLUSIONS This novel N-tetrasaccharide could serve as a diagnostic marker of ALG1-, PMM2-, or MPI-CDG for screening of these 3 common CDG subtypes that comprise >70% of CDG type I patients. Its quantification by LC-MS/MS may be useful for monitoring therapeutic efficacy of mannose. The discovery of these small N-glycans also indicates the presence of an alternative pathway in N-glycosylation not recognized previously, but its biological significance remains to be studied.

JIMD Reports ◽  
2019 ◽  
Vol 50 (1) ◽  
pp. 31-39
Author(s):  
Walinka Tol ◽  
Angel Ashikov ◽  
Eckhard Korsch ◽  
Nurulamin Abu Bakar ◽  
Michèl A. Willemsen ◽  
...  

2005 ◽  
Vol 201 (10) ◽  
pp. 1543-1553 ◽  
Author(s):  
Albert Zimmermann ◽  
Mirko Trilling ◽  
Markus Wagner ◽  
Manuel Wilborn ◽  
Ivan Bubic ◽  
...  

A mouse cytomegalovirus (MCMV) gene conferring interferon (IFN) resistance was identified. This gene, M27, encodes a 79-kD protein that selectively binds and down-regulates for signal transducer and activator of transcription (STAT)-2, but it has no effect on STAT1 activation and signaling. The absence of pM27 conferred MCMV susceptibility to type I IFNs (α/β), but it had a much more dramatic effect on type II IFNs (γ) in vitro and in vivo. A comparative analysis of M27+ and M27− MCMV revealed that the antiviral efficiency of IFN-γ was partially dependent on the synergistic action of type I IFNs that required STAT2. Moreover, STAT2 was directly activated by IFN-γ. This effect required IFN receptor expression and was independent of type I IFNs. IFN-γ induced increasing levels of tyrosine-phosphorylated STAT2 in M27− MCMV-infected cells that were essential for the antiviral potency of IFN-γ. pM27 represents a new strategy for simultaneous evasions from types I and II IFNs, and it documents an unknown biological significance for STAT2 in antiviral IFN-γ responses.


2005 ◽  
Vol 28 (6) ◽  
pp. 1197-1198 ◽  
Author(s):  
M. Jackson ◽  
P. Clayton ◽  
S. Grunewald ◽  
G. Keir ◽  
K. Mills ◽  
...  

2021 ◽  
Author(s):  
Giovanna L. Gallo ◽  
Ayelen Valko ◽  
Nathalia Herrera Aguilar ◽  
Ariel D. Weisz ◽  
Cecilia D'Alessio

Congenital Disorders of Glycosylation Type I (CDG-I) are inherited human diseases caused by deficiencies in lipid-linked oligosaccharide (LLO) synthesis or the glycan transfer to proteins during N-glycosylation. We constructed a platform of 16 Schizosaccharomyces pombe mutant strains that synthesize all possible theoretical combinations of LLOs containing three to zero Glc and nine to five Man. The occurrence of unexpected LLOs suggested the requirement of specific Man residues for glucosyltransferases activities. We then quantified protein hypoglycosylation in each strain and found that in S. pombe the presence of Glc in the LLO is more relevant to the transfer efficiency than the amount of Man residues. Surprisingly, a decrease in the number of Man in glycans somehow improved the glycan transfer. The most severe hypoglycosylation was produced in cells completely lacking Glc and having a high number of Man. This deficiency could be reverted by expressing a single subunit OST with a broad range of substrate specificity. Our work shows the usefulness of this new S. pombe set of mutants as a platform to model the molecular bases of human CDG-I diseases.


2001 ◽  
Vol 359 (2) ◽  
pp. 249 ◽  
Author(s):  
Philippa MILLS ◽  
Kevin MILLS ◽  
Peter CLAYTON ◽  
Andrew JOHNSON ◽  
David WHITEHOUSE ◽  
...  

2012 ◽  
Vol 21 (19) ◽  
pp. 4151-4161 ◽  
Author(s):  
Sharita Timal ◽  
Alexander Hoischen ◽  
Ludwig Lehle ◽  
Maciej Adamowicz ◽  
Karin Huijben ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document