single subunit
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 20)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Giovanna L. Gallo ◽  
Ayelen Valko ◽  
Nathalia Herrera Aguilar ◽  
Ariel D. Weisz ◽  
Cecilia D'Alessio

Congenital Disorders of Glycosylation Type I (CDG-I) are inherited human diseases caused by deficiencies in lipid-linked oligosaccharide (LLO) synthesis or the glycan transfer to proteins during N-glycosylation. We constructed a platform of 16 Schizosaccharomyces pombe mutant strains that synthesize all possible theoretical combinations of LLOs containing three to zero Glc and nine to five Man. The occurrence of unexpected LLOs suggested the requirement of specific Man residues for glucosyltransferases activities. We then quantified protein hypoglycosylation in each strain and found that in S. pombe the presence of Glc in the LLO is more relevant to the transfer efficiency than the amount of Man residues. Surprisingly, a decrease in the number of Man in glycans somehow improved the glycan transfer. The most severe hypoglycosylation was produced in cells completely lacking Glc and having a high number of Man. This deficiency could be reverted by expressing a single subunit OST with a broad range of substrate specificity. Our work shows the usefulness of this new S. pombe set of mutants as a platform to model the molecular bases of human CDG-I diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dan Zhao ◽  
Weida Liu ◽  
Ke Chen ◽  
Zihan Wu ◽  
Huirong Yang ◽  
...  

AbstractEukaryotic RNA polymerase I (Pol I) transcribes ribosomal DNA and generates RNA for ribosome synthesis. Pol I accounts for the majority of cellular transcription activity and dysregulation of Pol I transcription leads to cancers and ribosomopathies. Despite extensive structural studies of yeast Pol I, structure of human Pol I remains unsolved. Here we determined the structures of the human Pol I in the pre-translocation, post-translocation, and backtracked states at near-atomic resolution. The single-subunit peripheral stalk lacks contacts with the DNA-binding clamp and is more flexible than the two-subunit stalk in yeast Pol I. Compared to yeast Pol I, human Pol I possesses a more closed clamp, which makes more contacts with DNA. The Pol I structure in the post-cleavage backtracked state shows that the C-terminal zinc ribbon of RPA12 inserts into an open funnel and facilitates “dinucleotide cleavage” on mismatched DNA–RNA hybrid. Critical disease-associated mutations are mapped on Pol I regions that are involved in catalysis and complex organization. In summary, the structures provide new sights into human Pol I complex organization and efficient proofreading.


2021 ◽  
Vol 22 (17) ◽  
pp. 9647
Author(s):  
Epameinondas Tsagogiannis ◽  
Elpiniki Vandera ◽  
Alexandra Primikyri ◽  
Stamatia Asimakoula ◽  
Andreas G. Tzakos ◽  
...  

The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis–Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg−1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.


2021 ◽  
Author(s):  
Jacob A West-Roberts ◽  
Paula B. Matheus Carnevali ◽  
Marie Charlotte Scholmerich ◽  
Basem Al-Shayeb ◽  
Alex Thomas ◽  
...  

The Chloroflexi superphylum have been investigated primarily from the perspective of reductive dehalogenation of toxic compounds, anaerobic photosynthesis and wastewater treatment, but remain relatively little studied compared to their close relatives within the larger Terrabacteria group, including Cyanobacteria, Actinobacteria, and Firmicutes. Here, we conducted a detailed phylogenetic analysis of the phylum Chloroflexota, the phylogenetically proximal candidate phylum Dormibacteraeota, and a newly defined sibling phylum proposed in the current study, Eulabeiota. These groups routinely root together in phylogenomic analyses, and constitute the Chloroflexi supergroup. Chemoautotrophy is widespread in Chloroflexi. Two Form I Rubisco ancestral subtypes that both lack the small subunit are prevalent in ca. Eulabeiota and Chloroflexota, suggesting that the predominant modern pathway for CO2 fixation evolved in these groups. The single subunit Form I Rubiscos are inferred to have evolved prior to oxygenation of the Earth's atmosphere and now predominantly occur in anaerobes. Prevalent in both Chloroflexota and ca. Eulabeiota are capacities related to aerobic oxidation of gases, especially CO and H2. In fact, aerobic and anaerobic CO dehydrogenases are widespread throughout every class-level lineage, whereas traits such as denitrification and reductive dehalogenation are heterogeneously distributed across the supergroup. Interestingly, some Chloroflexota have a novel clade of group 3 NiFe hydrogenases that is phylogenetically distinct from previously reported groups. Overall, the analyses underline the very high level of metabolic diversity in the Chloroflexi supergroup, suggesting the ancestral metabolic platform for this group enabled highly varied adaptation to ecosystems that appeared in the aerobic world.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Janne J. Mäkinen ◽  
Yeonoh Shin ◽  
Eeva Vieras ◽  
Pasi Virta ◽  
Mikko Metsä-Ketelä ◽  
...  

AbstractRNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2′dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2′OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2′dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2′dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2′OH group to promote NTP binding, but selectively inhibits incorporation of 2′dNTPs by interacting with their 3′OH group to favor the catalytically-inert 2′-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.


2020 ◽  
Vol 117 (47) ◽  
pp. 29290-29291
Author(s):  
Lena Möller ◽  
Glenn Regnier ◽  
Alain J. Labro ◽  
Dirk J. Snyders ◽  
Rikard Blunck
Keyword(s):  

2020 ◽  
Vol 117 (29) ◽  
pp. 16976-16984 ◽  
Author(s):  
Garrett E. Debs ◽  
Michael Cha ◽  
Xueqi Liu ◽  
Andrew R. Huehn ◽  
Charles V. Sindelar

Microtubules are tubular polymers with essential roles in numerous cellular activities. Structures of microtubules have been captured at increasing resolution by cryo-EM. However, dynamic properties of the microtubule are key to its function, and this behavior has proved difficult to characterize at a structural level due to limitations in existing structure determination methods. We developed a high-resolution cryo-EM refinement method that divides an imaged microtubule into its constituent protofilaments, enabling deviations from helicity and other sources of heterogeneity to be quantified and corrected for at the single-subunit level. We demonstrate that this method improves the resolution of microtubule 3D reconstructions and substantially reduces anisotropic blurring artifacts, compared with methods that utilize helical symmetry averaging. Moreover, we identified an unexpected, discrete behavior of the m-loop, which mediates lateral interactions between neighboring protofilaments and acts as a flexible hinge between them. The hinge angle adopts preferred values corresponding to distinct conformations of the m-loop that are incompatible with helical symmetry. These hinge angles fluctuate in a stochastic manner, and perfectly cylindrical microtubule conformations are thus energetically and entropically penalized. The hinge angle can diverge further from helical symmetry at the microtubule seam, generating a subpopulation of highly distorted microtubules. However, the seam-distorted subpopulation disappears in the presence of Taxol, a microtubule stabilizing agent. These observations provide clues into the structural origins of microtubule flexibility and dynamics and highlight the role of structural polymorphism in defining microtubule behavior.


2020 ◽  
Author(s):  
Janne J. Mäkinen ◽  
Yeonoh Shin ◽  
Eeva Vieras ◽  
Pasi Virta ◽  
Mikko Metsä-Ketelä ◽  
...  

AbstractRNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2’dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2’ OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2’dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here we show that a conserved Arg residue uses a two-pronged strategy to select against 2’dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2’OH group to promote NTP binding, but selectively inhibits incorporation of 2’dNTPs by interacting with their 3’OH group to favor the catalytically-inert 2’-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.


2020 ◽  
Vol 117 (17) ◽  
pp. 9365-9376 ◽  
Author(s):  
Lena Möller ◽  
Glenn Regnier ◽  
Alain J. Labro ◽  
Rikard Blunck ◽  
Dirk J. Snyders

The electrically silent (KvS) members of the voltage-gated potassium (Kv) subfamilies Kv5, Kv6, Kv8, and Kv9 selectively modulate Kv2 subunits by forming heterotetrameric Kv2/KvS channels. Based on the reported 3:1 stoichiometry of Kv2.1/Kv9.3 channels, we tested the hypothesis that Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. We investigate the Kv2.1/Kv6.4 stoichiometry using single subunit counting and functional characterization of tetrameric concatemers. For selecting the most probable stoichiometry, we introduce a model-selection method that is applicable for any multimeric complex by investigating the stoichiometry of Kv2.1/Kv6.4 channels. Weighted likelihood calculations bring rigor to a powerful technique. Using the weighted-likelihood model-selection method and analysis of electrophysiological data, we show that Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. Within this stoichiometry, the Kv6.4 subunits have to be positioned alternating with Kv2.1 to express functional channels. The variability in Kv2/KvS assembly increases the diversity of heterotetrameric configurations and extends the regulatory possibilities of KvS by allowing the presence of more than one silent subunit.


Sign in / Sign up

Export Citation Format

Share Document