scholarly journals Ulam stability and data dependence for fractional differential equations with Caputo derivative

Author(s):  
JinRong Wang ◽  
Linli Lv ◽  
Yong Zhou
Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5265-5274 ◽  
Author(s):  
Raad Ameen ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

The objective of this paper is to extend Ulam-Hyers stability and Ulam-Hyers-Rassias stability theory to differential equations with delay and in the frame of a certain class of a generalized Caputo fractional derivative with dependence on a kernel function. We discuss the conditions such delay generalized Caputo fractional differential equations should satisfy to be stable in the sense of Ulam-Hyers and Ulam-Hyers-Rassias. To demonstrate our results two examples are presented.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Erdal Karapınar ◽  
Jamal Eddine Lazreg

Abstract In this manuscript, we examine the existence and the Ulam stability of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with instantaneous impulses in Banach spaces. The results are based on fixed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. We provide some examples to indicate the applicability of our results.


2019 ◽  
Vol 52 (1) ◽  
pp. 283-295 ◽  
Author(s):  
Manzoor Ahmad ◽  
Akbar Zada ◽  
Jehad Alzabut

AbstractIn this paper, existence and uniqueness of solution for a coupled impulsive Hilfer–Hadamard type fractional differential system are obtained by using Kransnoselskii’s fixed point theorem. Different types of Hyers–Ulam stability are also discussed.We provide an example demonstrating consistency to the theoretical findings.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Jia Xin ◽  
Jianfei Huang ◽  
Weijia Zhao ◽  
Jiang Zhu

A spectral deferred correction method is presented for the initial value problems of fractional differential equations (FDEs) with Caputo derivative. This method is constructed based on the residual function and the error equation deduced from Volterra integral equations equivalent to the FDEs. The proposed method allows that one can use a relatively few nodes to obtain the high accuracy numerical solutions of FDEs without the penalty of a huge computational cost due to the nonlocality of Caputo derivative. Finally, preliminary numerical experiments are given to verify the efficiency and accuracy of this method.


Sign in / Sign up

Export Citation Format

Share Document