scholarly journals Region Adaptive Single-image Super-resolution Using Wavelet Transform

Author(s):  
Oh-Jin Kwon ◽  
Je-Ho Park
Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 553 ◽  
Author(s):  
Faisal Sahito ◽  
Pan Zhiwen ◽  
Junaid Ahmed ◽  
Raheel Ahmed Memon

We propose a scale-invariant deep neural network model based on wavelets for single image super-resolution (SISR). The wavelet approximation images and their corresponding wavelet sub-bands across all predefined scale factors are combined to form a big training data set. Then, mappings are determined between the wavelet sub-band images and their corresponding approximation images. Finally, the gradient clipping process is used to boost the training speed of the algorithm. Furthermore, stationary wavelet transform (SWT) is used instead of a discrete wavelet transform (DWT), due to its up-scaling property. In this way, we can preserve more information about the images. In the proposed model, the high-resolution image is recovered with detailed features, due to redundancy (across the scale) property of wavelets. Experimental results show that the proposed model outperforms state-of-the algorithms in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).


Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


Author(s):  
Vishal Chudasama ◽  
Kishor Upla ◽  
Kiran Raja ◽  
Raghavendra Ramachandra ◽  
Christoph Busch

Sign in / Sign up

Export Citation Format

Share Document