scholarly journals Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network

Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.

Author(s):  
Yanchun Li ◽  
Jianglian Cao ◽  
Zhetao Li ◽  
Sangyoon Oh ◽  
Nobuyoshi Komuro

Single image super-resolution attempts to reconstruct a high-resolution (HR) image from its corresponding low-resolution (LR) image, which has been a research hotspot in computer vision and image processing for decades. To improve the accuracy of super-resolution images, many works adopt very deep networks to model the translation from LR to HR, resulting in memory and computation consumption. In this article, we design a lightweight dense connection distillation network by combining the feature fusion units and dense connection distillation blocks (DCDB) that include selective cascading and dense distillation components. The dense connections are used between and within the distillation block, which can provide rich information for image reconstruction by fusing shallow and deep features. In each DCDB, the dense distillation module concatenates the remaining feature maps of all previous layers to extract useful information, the selected features are then assessed by the proposed layer contrast-aware channel attention mechanism, and finally the cascade module aggregates the features. The distillation mechanism helps to reduce training parameters and improve training efficiency, and the layer contrast-aware channel attention further improves the performance of model. The quality and quantity experimental results on several benchmark datasets show the proposed method performs better tradeoff in term of accuracy and efficiency.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1234
Author(s):  
Lei Zha ◽  
Yu Yang ◽  
Zicheng Lai ◽  
Ziwei Zhang ◽  
Juan Wen

In recent years, neural networks for single image super-resolution (SISR) have applied more profound and deeper network structures to extract extra image details, which brings difficulties in model training. To deal with deep model training problems, researchers utilize dense skip connections to promote the model’s feature representation ability by reusing deep features of different receptive fields. Benefiting from the dense connection block, SRDensenet has achieved excellent performance in SISR. Despite the fact that the dense connected structure can provide rich information, it will also introduce redundant and useless information. To tackle this problem, in this paper, we propose a Lightweight Dense Connected Approach with Attention for Single Image Super-Resolution (LDCASR), which employs the attention mechanism to extract useful information in channel dimension. Particularly, we propose the recursive dense group (RDG), consisting of Dense Attention Blocks (DABs), which can obtain more significant representations by extracting deep features with the aid of both dense connections and the attention module, making our whole network attach importance to learning more advanced feature information. Additionally, we introduce the group convolution in DABs, which can reduce the number of parameters to 0.6 M. Extensive experiments on benchmark datasets demonstrate the superiority of our proposed method over five chosen SISR methods.


2019 ◽  
Vol 16 (4) ◽  
pp. 413-426 ◽  
Author(s):  
Viet Khanh Ha ◽  
Jin-Chang Ren ◽  
Xin-Ying Xu ◽  
Sophia Zhao ◽  
Gang Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document