Deep fractal residual network for fast and accurate single image super resolution

2020 ◽  
Vol 398 ◽  
pp. 389-398 ◽  
Author(s):  
Yanghao Zhou ◽  
Jianfeng Dong ◽  
Yubin Yang
2021 ◽  
Vol 213 ◽  
pp. 106663
Author(s):  
Yujie Dun ◽  
Zongyang Da ◽  
Shuai Yang ◽  
Yao Xue ◽  
Xueming Qian

Author(s):  
Guoan Cheng ◽  
Ai Matsune ◽  
Huaijuan Zang ◽  
Toru Kurihara ◽  
Shu Zhan

In this paper, we propose an enhanced dual path attention network (EDPAN) for image super-resolution. ResNet is good at implicitly reusing extracted features, DenseNet is good at exploring new features. Dual Path Network (DPN) combines ResNets and DenseNet to create a more accurate architecture than the straightforward one. We experimentally show that the residual network performs best when each block consists of two convolutions, and the dense network performs best when each micro-block consists of one convolution. Following these ideas, our EDPAN exploits the advantages of the residual structure and the dense structure. Besides, to deploy the computations for features more effectively, we introduce the attention mechanism into our EDPAN. Moreover, to relieve the parameters burden, we also utilize recursive learning to propose a lightweight model. In the experiments, we demonstrate the effectiveness and robustness of our proposed EDPAN on different degradation situations. The quantitative results and visualization comparison can sufficiently indicate that our EDPAN achieves favorable performance over the state-of-the-art frameworks.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 339
Author(s):  
Yan Liu ◽  
Guangrui Zhang ◽  
Hai Wang ◽  
Wei Zhao ◽  
Min Zhang ◽  
...  

In this paper, we propose an efficient multibranch residual network for single image super-resolution. Based on the idea of aggregated transformations, the split-transform-merge strategy is exploited to implement the multibranch architecture in an easy, extensible way. By this means, both the number of parameters and the time complexity are significantly reduced. In addition, to ensure the high-performance of super-resolution reconstruction, the residual block is modified and simplified with reference to the enhanced deep super-resolution network (EDSR) model. Moreover, our developed method possesses advantages of flexibility and extendibility, which are helpful to establish a specific network according to practical demands. Experimental results on both the Diverse 2K (DIV2K) and other standard datasets show that the proposed method can achieve a good performance in comparison with EDSR under the same number of convolution layers.


Sign in / Sign up

Export Citation Format

Share Document