Study on the Prediction of Real estate Price Index based on HHGA-RBF Neural Network Algorithm

Author(s):  
Huan Ma ◽  
Ming Chen ◽  
Jianwei Zhang
2014 ◽  
Vol 644-650 ◽  
pp. 1351-1354
Author(s):  
Jun Ye Wang

The design method of large-scale intelligent traffic monitoring system is studied. Traffic monitoring methods have become the core problem of intelligent transportation research field. To this end, this paper proposes an intelligent traffic monitoring method based on clustering RBF neural network algorithm. Fourier coefficient normalization method is used to extract the feature of traffic state, to be as the basis for intelligent traffic monitoring. Using clustering RBF neural network algorithm identify the traffic state effectively, thus to complete the state recognition of intelligent traffic monitoring. Experimental results show that the proposed algorithm performed in intelligent traffic monitoring, can greatly improve the accuracy of monitoring.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Weikuan Jia ◽  
Dean Zhao ◽  
Tian Shen ◽  
Chunyang Su ◽  
Chanli Hu ◽  
...  

When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer’s neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.


Sign in / Sign up

Export Citation Format

Share Document