real estate price
Recently Published Documents





2021 ◽  
Vol 2021 ◽  
pp. 1-10
Qing Liu

At this stage, broadening the consumer market, upgrading the consumption system and gradually establishing a consumption-led development concept are key factors in promoting high-quality economic development. At the same time, China's macro economy is also experiencing another test. The rapid development of China's real estate market in recent years has attracted a large number of investors, and real estate prices have produced irrational and substantial increases. Behind the boom of the real estate market is a social system crisis driven by profiteering and the growing seriousness of real estate financial bubble. So exploring the mechanism of the influence of real estate prices on the upgrading of residents' consumption is important for the current stage of China. Therefore, it is important to investigate the mechanism of real estate price impact on consumer upgrading for the coordinated development of real estate industry and national economy. In this paper, we analyze and examine the theory on the consumption improvement by the literature survey method. We also summarize the present research on the correlation and the influence mechanism of the real estate price and the consumption improvement and choose the index which reflects the present state of the real estate industry and the consumption of the inhabitant. Besides the input indicators that qualitatively manage the impact of housing prices on the improvement of residents' consumption, we first use the descriptive statistics method to understand the level of the Chinese real estate market and improve consumer spending. Based on this, the descriptive statistical method is applied to define the current state of China's real estate market and the level of improvement in consumption, and to define the standard for improving consumption in China. On the other hand, based on the spatial and spatial spillover points of view, we use spatial analysis framework combined with exploratory spatial data analysis and GIS to investigate spatial correlation between consumption structure and housing price, and accurately reflect the spatial clustering status of the index by drawing. Moran dispersion plot and Lisa cluster plot, then the spatial Darwinian model, are used to investigate the impact of real estate prices on the increase in occupant consumption from a macro perspective.

2021 ◽  
Vol Vol. 72 (6) ◽  
pp. 1055-1077
Maurin Baillif ◽  
Matthieu de Lapparent ◽  
Evanthia Kazagli

2021 ◽  
Vol 19 (17) ◽  
A. A. Yakub ◽  
Hishamuddin Mohd. Ali ◽  
Kamalahasan Achu ◽  
Rohaya Abdul Jalil ◽  
Salawu A.O

A relatively high level of precision is required in real estate valuation for investment purposes. Such estimates of value which is carried out by real estate professionals are relied upon by the end-users of such financial information having paid a certain fee for consultation hence leaving little room for errors. However, valuation reports are often criticised for their inability to be replicated by two or more valuers. Hence, stirring to a keen interest within the academic cycle leading to the need for exploring avenues to improve the price prediction ability of the professional valuer. This study, therefore, focuses on overcoming these challenges by introducing an integrated approach that combines ANFIS with ANN termed ANFIS-AN, thereby having a reiteration in terms of ANN application to fortify price predictability. Using 255 property data alongside 12 variables, the ANFIS-AN model was adopted and its outcome was compared with that of ANN. Finally, the results were subjected to 3 different error testing models using the same training and learning benchmarks. The proposed model’s RMSE gave 1.413169, while that of ANN showed 9.942206. Similarly, using MAPE, ANN recorded 0.256438 while ANFIS-AN had 0.208324. Hence, ANFIS-AN’s performance is laudable, thus a better tool over ANN.

2021 ◽  
Vol 9 (3) ◽  
pp. 51
Byron J. Idrovo-Aguirre ◽  
Francisco J. Lozano ◽  
Javier E. Contreras-Reyes

In this paper, we approached the concept of real estate bubble, analyzing the risk its bursting could generate for the Chilean financial market. Specifically, we analyzed the relationship between real housing prices, the economic activity index, and mortgage interest rates denominated in inflation-linked units from 1994 to 2020. The analysis was based on a second order Markov switching model with the predetermined variables mentioned later, whose parameters were obtained through the expectation–maximization algorithm. Then, we built a probability index as early warning indicator for potential imbalances in the real estate price that could put financial market stability at risk. The indicator is important to evaluate economic policy calibrations in time. A main finding was that the real housing price had a non-linear relationship with economic activity and the mortgage interest rate. Therefore, the evolution of the real estate price has been consistent with fundamental macroeconomic variables, even under a high growth regime, with increases above 12% per year. About 92% of housing price variability derived from changing macrofinancial conditions, suggesting a low margin of speculative behavior.

2021 ◽  
pp. 52-66
Huang-Mei He ◽  
Yi Chen ◽  
Jia-Ying Xiao ◽  
Xue-Qing Chen ◽  
Zne-Jung Lee

China has carried out a large number of real estate market reforms that change the real estate market demand considerably. At the same time, the real estate price has soared in some cities and has surpassed the spending power of many ordinary people. As the real estate price has received widespread attention from society, it is important to understand what factors affect the real estate price. Therefore, we propose a data analysis method for finding out the influencing factors of real estate prices. The method performs data cleaning and conversion on the used data first. To discretize the real estate price, we use the mean ± standard deviation (SD), mean ± 0.5 SD, and mean ± 2 SD of the price and divide it into three categories as the output variable. Then, we establish the decision tree and random forest model for six different situations for comparison. When the data set is divided into training data (70%) and testing data (30%), it has the highest testing accuracy. In addition, by observing the importance of each input variable, it is found that the main influencing factors of real estate price are cost, interior decoration, location, and status. The results suggest that both the real estate industry and buyers should pay attention to these factors to adjust or purchase real estate.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Antonio M. Cunha ◽  
Júlio Lobão

PurposeThis paper explores the real estate price determinants at four geographical levels: in the European Union as a whole, in the 28 European Union countries, in one European Union country (Portugal) and in 25 Portuguese metropolitan statistical areas (MSAs).Design/methodology/approachThe authors run two time series regression models and two panel data regression models with observations of potential real estate price determinants and House Price Indices collected from Eurostat.FindingsThe results show that price determinants, such as gross domestic product (GDP), interest rates, housing starts and tourism, are statistically significant, but not in all the four geographical levels of analysis. The results also confirm the autoregressive characteristic of real estate prices, with the last period price change being the most important determinant of current period real estate price change.Practical implicationsForecasting real estate prices can be made more effective by knowing that each geographical level of analysis implies different price determinants and that momentum is an important determinant in real estate returns.Originality/valueTo the best of the authors knowledge, this is the first study to develop and test a real estate price equilibrium model at several different geographical levels of the same political space.

Sign in / Sign up

Export Citation Format

Share Document