Software Design and Implementation of Large-Scale Intelligent Traffic Monitoring System

2014 ◽  
Vol 644-650 ◽  
pp. 1351-1354
Author(s):  
Jun Ye Wang

The design method of large-scale intelligent traffic monitoring system is studied. Traffic monitoring methods have become the core problem of intelligent transportation research field. To this end, this paper proposes an intelligent traffic monitoring method based on clustering RBF neural network algorithm. Fourier coefficient normalization method is used to extract the feature of traffic state, to be as the basis for intelligent traffic monitoring. Using clustering RBF neural network algorithm identify the traffic state effectively, thus to complete the state recognition of intelligent traffic monitoring. Experimental results show that the proposed algorithm performed in intelligent traffic monitoring, can greatly improve the accuracy of monitoring.

2012 ◽  
Vol 542-543 ◽  
pp. 1398-1402
Author(s):  
Guo Zhong Cheng ◽  
Wei Feng ◽  
Fang Song Cui ◽  
Shi Lu Zhang

This study improves the neural network algorithm that was presented by J.J.Hopfield for solving TSP(travelling salesman problem) and gets an effective algorithm whose time complexity is O(n*n), so we can solve quickly TSP more than 500 cities in microcomputer. The paper considers the algorithm based on the replacement function of the V Value. The improved algorithm can greatly reduces the time and space complexities of Hopfield method. The TSP examples show that the proposed algorithm could efficiently find a satisfactory solution and has a fast convergence speed.


2011 ◽  
Vol 271-273 ◽  
pp. 441-447
Author(s):  
Xiao Mei Chen ◽  
Dang Gang ◽  
Tian Yang

The algorithm of anomaly detection for large scale networks is a key way to promptly detect the abnormal traffic flows. In this paper, priori triggered BP neural network algorithm(PBP) is analyzed for the purpose of dealing with the problems caused by typical algorithms that are not able to adapt and learn; detect with high precision; provide high level of correctness. PBP uses K-Means and PCA to trigger self-adapting and learning ability, and also, it uses historical neuron parameter to initialize the neural network, so that it use the trained network to detect the abnormal traffic flows. According to experiments, PBP can obtain a higher level of correctness of detection than priori algorithm, and it can adapt itself according to different network environments.


Sign in / Sign up

Export Citation Format

Share Document