Optimization of antimicrobial peptide design: insights from action mechanisms

2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Caleb M. Agbale ◽  
Osmel Fleitas ◽  
Isaac K. Galyuon ◽  
Octavio L. Franco
Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 27 ◽  
Author(s):  
Deepesh Nagarajan ◽  
Tushar Nagarajan ◽  
Neha Nanajkar ◽  
Nagasuma Chandra

Antimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptides are therefore promising drug candidates in the face of overwhelming multi-drug resistance to conventional antibiotics. Over the past few decades, thousands of antimicrobial peptides have been characterized in vitro, and their efficacy data are now available in a multitude of public databases. Computational antimicrobial peptide design attempts typically use such data. However, utilizing heterogenous data aggregated from different sources presents significant drawbacks. In this report, we present a uniform dataset containing 20 antimicrobial peptides assayed against 30 organisms of Gram-negative, Gram-positive, mycobacterial, and fungal origin. We also present circular dichroism spectra for all antimicrobial peptides. We draw simple inferences from this data, and we discuss what characteristics are essential for antimicrobial peptide efficacy. We expect our uniform dataset to be useful for future projects involving computational antimicrobial peptide design.


2018 ◽  
Author(s):  
Deepesh Nagarajan ◽  
Tushar Nagarajan ◽  
Neha Nanajkar ◽  
Nagasuma Chandra

ABSTRACTAntimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptides are therefore promising drug candidates in the face of overwhelming multi-drug resistance to conventional antibiotics. Over the past few decades, thousands of antimicrobial peptides have been characterized in vitro, and their efficacy data is now available in a multitude of public databases. Computational antimicrobial peptide design attempts typically use such data. However, utilizing heterogenous data aggregated from different sources presents significant drawbacks. In this report, we present a uniform dataset containing 20 antimicrobial peptides assayed against 30 organisms spanning gram positive, gram negative, fungal, and mycobacterial origin. We draw inferences from the results of 600 individual MIC assays, and discuss what characteristics are essential for antimicrobial peptide efficacy. We expect our uniform dataset to be useful for future projects involving computational antimicrobial peptide design.


2008 ◽  
Vol 37 (suppl_1) ◽  
pp. D933-D937 ◽  
Author(s):  
Guangshun Wang ◽  
Xia Li ◽  
Zhe Wang

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
William F. Porto ◽  
Luz Irazazabal ◽  
Eliane S. F. Alves ◽  
Suzana M. Ribeiro ◽  
Carolina O. Matos ◽  
...  

2017 ◽  
Vol 293 (10) ◽  
pp. 3492-3509 ◽  
Author(s):  
Deepesh Nagarajan ◽  
Tushar Nagarajan ◽  
Natasha Roy ◽  
Omkar Kulkarni ◽  
Sathyabaarathi Ravichandran ◽  
...  

Pneumologie ◽  
2006 ◽  
Vol 59 (12) ◽  
Author(s):  
R Shaykhiev ◽  
C Beißwenger ◽  
K Kändler ◽  
J Senske ◽  
A Püchner ◽  
...  

2016 ◽  
Author(s):  
Marc Devocelle ◽  
Éanna Forde ◽  
André Schütte ◽  
Andrea Molero-Bondia ◽  
Emer Reeves ◽  
...  

2015 ◽  
Vol 1 (4) ◽  
pp. 76
Author(s):  
Seyadeh Zahra Sajjadiyan ◽  
Sarah Mohammadinejad ◽  
Leila Hassani

Sign in / Sign up

Export Citation Format

Share Document