innate immunity
Recently Published Documents


TOTAL DOCUMENTS

8054
(FIVE YEARS 1906)

H-INDEX

227
(FIVE YEARS 23)

2022 ◽  
Vol 52 ◽  
pp. 60-67
Author(s):  
Caterina Prelli Bozzo ◽  
Dorota Kmiec ◽  
Frank Kirchhoff
Keyword(s):  

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 221-225
Author(s):  
Alex G. Johnson ◽  
Tanita Wein ◽  
Megan L. Mayer ◽  
Brianna Duncan-Lowey ◽  
Erez Yirmiya ◽  
...  

Ancient origin of cell death Gasdermins are cell death proteins in mammals that form membrane pores in response to pathogen infection. Johnson et al . report that diverse bacteria encode structural and functional homologs of mammalian gasdermins. Like their mammalian counterparts, bacterial gasdermins are activated by caspase-like proteases, oligomerize into large membrane pores, and defend against pathogen—in this case, bacteriophage—infection. Proteolytic activation occurs through the release of a short inhibitory peptide, and many bacterial gasdermins are lipidated to facilitate membrane pore formation. Pyroptotic cell death, a central component of mammalian innate immunity, thus has a shared origin with an ancient antibacteriophage defense system. —SMH


2022 ◽  
Vol 5 (1) ◽  
pp. 01-04
Author(s):  
Rajiv Kumar

Infections, inflammation, immunity, and inflammatory injury are different segments of biological events and link up altogether. Route of infection has no similarity with the cellular signaling pathway of inflammation, even though when inflammation is induced by infection. The organism responds toward infection that is initiated by the pathogen via inflammation, which is a natural way of defense initiated by innate immunity as a safeguard


Author(s):  
Seimi Watanabe ◽  
Makoto Kondo ◽  
Masako Ichishi ◽  
Akinobu Hayashi ◽  
Yoshiaki Matsushima ◽  
...  

2022 ◽  
Author(s):  
Laura Conejero ◽  
Paula Saz-Leal ◽  
José Luis Subiza

Viral outbreaks have become significant threats to global human public health. New emerging viruses, pathogen mutations, and even the progressive loss of efficacy in some existing vaccines are behind this problem, which is amplified by the rapid virus spread given the ease of current mobility. Taking into account that these outbreaks arise in the absence of conventional effective vaccines, alternative approaches based on trained (innate) immunity are being considered. This immunity is dependent on a functional reprogramming of innate immune cells, leading to an enhanced nonspecific response towards different pathogens, including viruses. Trained immunity-based vaccines (TIbVs), defined as vaccine formulations containing trained immunity inducers, could be used during viral outbreaks to confer non-specific protection but also to enhance adaptive specific immune responses. In this chapter, we aim to illustrate how TIbVs could tackle the above-mentioned situations derived from viral outbreaks, reviewing the potential of available TIbVs in such urgent situations with a special mention to COVID-19.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
John H. White

Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.


Author(s):  
Gloria Cinquegrani ◽  
Valentina Spigoni ◽  
Nicolas Thomas Iannozzi ◽  
Vanessa Parello ◽  
Riccardo C. Bonadonna ◽  
...  

Abstract  Introduction The inflammatory potential of SARS-CoV-2 Spike S1 (Spike) has never been tested in human primary macrophages (MΦ). Different recombinant Spikes might display different effects in vitro, according to protein length and glycosylation, and endotoxin (lipopolysaccharide, LPS) contamination. Objectives To assess (1) the effects of different Spikes on human primary MΦ inflammation; (2) whether LPS contamination of recombinant Spike is (con)cause in vitro of increased MΦ inflammation. Methods Human primary MΦ were incubated in the presence/absence of several different Spikes (10 nM) or graded concentrations of LPS. Pro-inflammatory marker expression (qPCR and ELISA) and supernatant endotoxin contamination (LAL test) were the main readouts. Results LPS-free, glycosylated Spike (the form expressed in infected humans) caused no inflammation in human primary MΦ. Two (out of five) Spikes were contaminated with endotoxins ≥ 3 EU/ml and triggered inflammation. A non-contaminated non-glycosylated Spike produced in E. coli induced MΦ inflammation. Conclusions Glycosylated Spike per se is not pro-inflammatory for human MΦ, a feature which may be crucial to evade the host innate immunity. In vitro studies with commercially available Spike should be conducted with excruciating attention to potential LPS contamination. Graphical abstract


2022 ◽  
Vol 12 ◽  
Author(s):  
Anissa Guillemin ◽  
Anuj Kumar ◽  
Mélanie Wencker ◽  
Emiliano P. Ricci

Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.


2022 ◽  
Vol 23 (2) ◽  
pp. 727
Author(s):  
Osamu Hotta ◽  
Norio Ieiri ◽  
Masaaki Nagai ◽  
Ayaki Tanaka ◽  
Yasuaki Harabuchi

Hematuria is an essential symptom of immunoglobulin A nephropathy (IgAN). Although the etiology of hematuria in IgAN has not been fully elucidated, it is thought that the rupture of the glomerular basement membranes caused by intra-capillary leukocyte influx, so-called glomerular vasculitis, is the pathological condition responsible for severe hematuria. Glomerular vasculitis are active lesions that exist in the glomeruli of acute phase IgAN and it is important because it is suspected to make the transition to segmental glomerular sclerosis (SGS) as a repair scar lesion in the chronic phase, and the progression of SGS would eventually lead to glomerular obsolescence. Worsening of hematuria concomitant with acute pharyngitis is common in patients with IgAN; therefore, elucidating the relationship between the immune system of Waldeyer’s ring, including the palatine tonsil and epipharyngeal lymphoid tissue, and the glomerular vasculitis may lead to understanding the nature of IgAN. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. Hyperactivation of innate immunity via upregulation of Toll-like receptors in the interfollicular area of the palatine tonsil and epipharyngeal lymphoid tissue, followed by enhanced fractalkine/CX3CR1 interactions, appears to play an important role in the development of glomerular vasculitis in IgAN. As latent but significant epipharyngitis is present in most patients with IgAN, it is plausible that acute upper respiratory infection may contribute as a trigger for the innate epipharyngeal immune system, which is already upregulated in a chronically inflamed environment. Given that epipharyngitis and its effects on IgAN are not fully understood, we propose that the so-called “epipharynx–kidney axis” may provide an important focus for future research.


Sign in / Sign up

Export Citation Format

Share Document