scholarly journals Effect Algebras of Positive Self-adjoint Operators Densely Defined on Hilbert Spaces

10.14311/1412 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
Z. Riečanová

We show that (generalized) effect algebras may be suitable very simple and natural algebraic structures for sets of (unbounded) positive self-adjoint linear operators densely defined on an infinite-dimensional complex Hilbert space. In these cases the effect algebraic operation, as a total or partially defined binary operation, coincides with the usual addition of operators in Hilbert spaces.


2011 ◽  
Vol 50 (1) ◽  
pp. 63-78
Author(s):  
Jiří Janda

ABSTRACT We continue in a direction of describing an algebraic structure of linear operators on infinite-dimensional complex Hilbert space ℋ. In [Paseka, J.- -Janda, J.: More on PT-symmetry in (generalized) effect algebras and partial groups, Acta Polytech. 51 (2011), 65-72] there is introduced the notion of a weakly ordered partial commutative group and showed that linear operators on H with restricted addition possess this structure. In our work, we are investigating the set of self-adjoint linear operators on H showing that with more restricted addition it also has the structure of a weakly ordered partial commutative group.



10.14311/1410 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
Z. Riečanová ◽  
M. Zajac

We study the set of all positive linear operators densely defined in an infinite-dimensional complex Hilbert space. We equip this set with various effect algebraic operations making it a generalized effect algebra. Further, sub-generalized effect algebras and interval effect algebras with respect of these operations are investigated.





2011 ◽  
Vol 68 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Z. Riečanová ◽  
M. Zajac ◽  
S. Pulmannová




1981 ◽  
Vol 33 (5) ◽  
pp. 1205-1231 ◽  
Author(s):  
Lawrence A. Fialkow

Let and denote infinite dimensional Hilbert spaces and let denote the space of all bounded linear operators from to . For A in and B in , let τAB denote the operator on defined by τAB(X) = AX – XB. The purpose of this note is to characterize the semi-Fredholm domain of τAB (Corollary 3.16). Section 3 also contains formulas for ind(τAB – λ). These results depend in part on a decomposition theorem for Hilbert space operators corresponding to certain “singular points” of the semi-Fredholm domain (Theorem 2.2). Section 4 contains a particularly simple formula for ind(τAB – λ) (in terms of spectral and algebraic invariants of A and B) for the case when τAB – λ is Fredholm (Theorem 4.2). This result is used to prove that (τBA) = –ind(τAB) (Corollary 4.3). We also prove that when A and B are bi-quasi-triangular, then the semi-Fredholm domain of τAB contains no points corresponding to nonzero indices.



1987 ◽  
Vol 39 (4) ◽  
pp. 880-892 ◽  
Author(s):  
Hari Bercovici

Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.



1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .



Sign in / Sign up

Export Citation Format

Share Document