Linear Operators in Hilbert Spaces II: The Infinite-Dimensional Case

1981 ◽  
Vol 33 (5) ◽  
pp. 1205-1231 ◽  
Author(s):  
Lawrence A. Fialkow

Let and denote infinite dimensional Hilbert spaces and let denote the space of all bounded linear operators from to . For A in and B in , let τAB denote the operator on defined by τAB(X) = AX – XB. The purpose of this note is to characterize the semi-Fredholm domain of τAB (Corollary 3.16). Section 3 also contains formulas for ind(τAB – λ). These results depend in part on a decomposition theorem for Hilbert space operators corresponding to certain “singular points” of the semi-Fredholm domain (Theorem 2.2). Section 4 contains a particularly simple formula for ind(τAB – λ) (in terms of spectral and algebraic invariants of A and B) for the case when τAB – λ is Fredholm (Theorem 4.2). This result is used to prove that (τBA) = –ind(τAB) (Corollary 4.3). We also prove that when A and B are bi-quasi-triangular, then the semi-Fredholm domain of τAB contains no points corresponding to nonzero indices.


2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


2005 ◽  
Vol 77 (4) ◽  
pp. 589-594 ◽  
Author(s):  
Paolo Piccione ◽  
Daniel V. Tausk

We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Luoyi Shi ◽  
Ru Dong Chen ◽  
Yu Jing Wu

The multiple-sets split equality problem (MSSEP) requires finding a pointx∈∩i=1NCi,y∈∩j=1MQjsuch thatAx=By, whereNandMare positive integers,{C1,C2,…,CN}and{Q1,Q2,…,QM}are closed convex subsets of Hilbert spacesH1,H2, respectively, andA:H1→H3,B:H2→H3are two bounded linear operators. WhenN=M=1, the MSSEP is called the split equality problem (SEP). If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP) and split feasibility problem (SFP), respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.


Filomat ◽  
2015 ◽  
Vol 29 (1) ◽  
pp. 75-81
Author(s):  
S.V. Djordjevic ◽  
G. Kantún-Montiel

In this note we consider the problem of localization and approximation of eigenvalues of operators on infinite dimensional Banach and Hilbert spaces. This problem has been studied for operators of finite rank but it is seldom investigated in the infinite dimensional case. The eigenvalues of an operator (between infinite dimensional vector spaces) can be positioned in different parts of the spectrum of the operator, even it is not necessary to be isolated points in the spectrum. Also, an isolated point in the spectrum is not necessary an eigenvalue. One method that we can apply is using Weyl?s theorem for an operator, which asserts that every point outside the Weyl spectrum is an isolated eigenvalue.


Author(s):  
Takao Nambu

SynopsisA Ljapunov equation XL − BX = C appears in stabilisation studies of linear systems. Here, the operators L, B, and C are given linear operators working in infinite-dimensional Hilbert spaces, which are derived from a specific control system. We have so far considered the case where L is a general elliptic operator of order 2 in a bounded domain of an Euclidean space. When L is instead a self-adjoint elliptic operator working in an interval of ℝ1, we derive here a stronger geometrical character of the solution X to the Ljapunov equation. The result is applied to stabilisation of one-dimensional diffusion equations.


10.14311/1412 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
Z. Riečanová

We show that (generalized) effect algebras may be suitable very simple and natural algebraic structures for sets of (unbounded) positive self-adjoint linear operators densely defined on an infinite-dimensional complex Hilbert space. In these cases the effect algebraic operation, as a total or partially defined binary operation, coincides with the usual addition of operators in Hilbert spaces.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Sign in / Sign up

Export Citation Format

Share Document