Generalized Effect Algebras of Positive Operators Densely Defined on Hilbert Spaces

2010 ◽  
Vol 50 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Marcel Polakovič ◽  
Zdenka Riečanová
10.14311/1412 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
Z. Riečanová

We show that (generalized) effect algebras may be suitable very simple and natural algebraic structures for sets of (unbounded) positive self-adjoint linear operators densely defined on an infinite-dimensional complex Hilbert space. In these cases the effect algebraic operation, as a total or partially defined binary operation, coincides with the usual addition of operators in Hilbert spaces.


2011 ◽  
Vol 50 (1) ◽  
pp. 63-78
Author(s):  
Jiří Janda

ABSTRACT We continue in a direction of describing an algebraic structure of linear operators on infinite-dimensional complex Hilbert space ℋ. In [Paseka, J.- -Janda, J.: More on PT-symmetry in (generalized) effect algebras and partial groups, Acta Polytech. 51 (2011), 65-72] there is introduced the notion of a weakly ordered partial commutative group and showed that linear operators on H with restricted addition possess this structure. In our work, we are investigating the set of self-adjoint linear operators on H showing that with more restricted addition it also has the structure of a weakly ordered partial commutative group.


10.14311/1410 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
Z. Riečanová ◽  
M. Zajac

We study the set of all positive linear operators densely defined in an infinite-dimensional complex Hilbert space. We equip this set with various effect algebraic operations making it a generalized effect algebra. Further, sub-generalized effect algebras and interval effect algebras with respect of these operations are investigated.


1999 ◽  
Vol 22 (1) ◽  
pp. 97-108 ◽  
Author(s):  
A. Parsian ◽  
A. Shafei Deh Abad

For a real Hilbert space(H,〈,〉), a subspaceL⊂H⊕His said to be a Dirac structure onHif it is maximally isotropic with respect to the pairing〈(x,y),(x′,y′)〉+=(1/2)(〈x,y′〉+〈x′,y〉). By investigating some basic properties of these structures, it is shown that Dirac structures onHare in one-to-one correspondence with isometries onH, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structureLonH, everyz∈His uniquely decomposed asz=p1(l)+p2(l)for somel∈L, wherep1andp2are projections. Whenp1(L)is closed, for any Hilbert subspaceW⊂H, an induced Dirac structure onWis introduced. The latter concept has also been generalized.


1987 ◽  
Vol 39 (4) ◽  
pp. 880-892 ◽  
Author(s):  
Hari Bercovici

Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.


2019 ◽  
Vol 10 (4) ◽  
pp. 313-324
Author(s):  
Mohammad W. Alomari

AbstractIn this work, an operator version of Popoviciu’s inequality for positive operators on Hilbert spaces under positive linear maps for superquadratic functions is proved. Analogously, using the same technique, an operator version of Popoviciu’s inequality for convex functions is obtained. Some other related inequalities are also presented.


Sign in / Sign up

Export Citation Format

Share Document