thermal processes
Recently Published Documents


TOTAL DOCUMENTS

1568
(FIVE YEARS 374)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 253 ◽  
pp. 115194
Author(s):  
Wanjun Qu ◽  
Jing Zhang ◽  
Hui Hong ◽  
Runhua Jiang ◽  
Kewen Peng ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Victor Goman ◽  
Vladimir Prakht ◽  
Vladimir Dmitrievskii ◽  
Fedor Sarapulov

The article describes a mathematical model of interconnected electromechanical and thermal processes in a linear induction motor (LIM). Here, we present the structure of the thermal model and provide the calculation formulas of the model. The thermal model consisted of eight control volumes on each tooth pitch of the LIM. Moreover, we also present a model of electromechanical processes and its interaction with the thermal model. The electromechanical model was based on the detailed magnetic and electrical equivalent circuits of the LIM. Model verification was performed using a model based on the finite element method and using experimental data. We also conducted a study focused on the necessity of considering the influence of various features of the thermal processes. We herein discuss the application of the model implemented in the MATLAB/Simulink, which was used to analyze the thermal performance of linear transport and technological induction motors. For the traction single-sided linear induction motor, we determined limits of safe operation by considering the unevenness of heating along the length in two cases: natural cooling and forced cooling. For forced cooling, required values of air flow were determined. For the arc induction motor of the screw press, the influence of various factors (i.e., reduction of the stroke, the use of a soft start, and the use of a forced cooling) on heating was evaluated.


2021 ◽  
pp. 83-92
Author(s):  
Vladimir Kondratenko ◽  
Victor Kadomkin ◽  
Olga Tretiyakova

In this work, using two specific examples, a general approach to the mathematical modeling of thermal processes in the contact zones of fuel elements in the development and optimization of various technological processes, systems and devices is considered. In the first example, a mathematical model of heat transfer in the contact zone (metal-hybrid thermal interface) between the heat-generating element and the heat-dissipating radiator is considered. In the second case, the thermal process in the processing of materials with a bonded diamond tool in the contact zone "diamond grain – binder – processed material" is considered and analyzed. The general approach to modeling thermal processes in the contact zones of various fuel elements makes it possible to optimize the parameters of technological processing modes and the correct operating conditions for products and systems


Author(s):  
A.V. Kolesnikov ◽  
◽  
S.V. Semenova ◽  
V.N. Vyrovoy ◽  
V.Ya. Kersh ◽  
...  

Abstract. The possibility of a thermal imaging technique for studying the setting of composite materials in the light of the paradigm of multifocal structure formation is analyzed. Since thermal violated observations are characterized by a high thermal sensitivity to temperature gradients up to hundredths of degrees, they make it possible to distinguish the temperature differences arising in the adjacent sections of the hardening binding. A technique for obtaining thermal images (thermograms) of a hardening composite binder is implemented. A series of thermograms of setting processes was obtained, for two of them a quantitative study was carried out, including the temperature gauge and the construction of several types of graphic mappings of the obtained patterns ‒ the normalized frequency of the distribution of the area of the binder for those temperatures and two types of densitograms ‒ radial and circular, allowing to visualize the structure of thermal foci arising in a binder. The hardening of binding materials is considered as a multistage exothermic process, in which hydration processes is accompanied by heating. The speed of heterogeneous processes associated with hydration depends, in turn, on the characteristics of the forming structure of binding materials. The observed thermal processes are considered as an indirect response, "shadow" of structure formation processes. The information consisting in this indirect response, however, is enough to make a number of conclusions on the nature of the emerging structure. The study revealed a high probability of the formation of foci near the macroscopic boundaries of the section (walls and bottom of the form), inconsistency of the structural processes, the occurrence of diverse foci of structure formation corresponding to temperature foci. The interpretation of the data obtained is the conclusion about formation of the regions of high plastic deformations near the boundaries of the contact of the foci. This regions are considered as a cluster of microscopic boundaries of the section, cracks and pores, which give rise to the structure of the destruction of the hardened material. The emergence of such areas is associated with nonynchronouspassage of structuring in different parts of the binder.


Author(s):  
Marina Dubyago ◽  
Nikolay Poluyanovich

It was established that methods based on artificial neural networks (HC) find the most widespread in predicting thermal processes in power cable networks. Analysis of influence of various functions of HC activation on forecast error of thermoflux processes in power cable networks was carried out. It is established that the minimum error of thermal processes prediction in power cable networks is HC with function of logsig activation in hidden layer and pureline in output layer.


Sign in / Sign up

Export Citation Format

Share Document