scholarly journals A Probabilistic Forecast of Wind Speed using Bayesian Model Averaging

2016 ◽  
Vol 11 (3) ◽  
pp. 221-235
Author(s):  
Keunhee Han ◽  
◽  
Chansik Kim ◽  
Chansoo Kim
Author(s):  
Gong Li ◽  
Jing Shi ◽  
Junyi Zhou

Wind energy has been the world’s fastest growing source of clean and renewable energy in the past decade. One of the fundamental difficulties faced by power system operators, however, is the unpredictability and variability of wind power generation, which is closely connected with the continuous fluctuations of the wind resource. Good short-term wind speed forecasting methods and techniques are urgently needed since it is important for wind energy conversion systems in terms of the relevant issues associated with the dynamic control of the wind turbine and the integration of wind energy into the power system. This paper proposes the application of Bayesian Model Averaging (BMA) method in combining the one-hour-ahead short-term wind speed forecasts from different statistical models. Based on the hourly wind speed observations from one representative site within North Dakota, four statistical models are built and the corresponding forecast time series are obtained. These data are then analyzed by using BMA method. The goodness-of-fit test results show that the BMA method is superior to its component models by providing a more reliable and accurate description of the total predictive uncertainty than the original elements, leading to a sharper probability density function for the probabilistic wind speed predictions.


Agromet ◽  
2020 ◽  
Vol 34 (1) ◽  
pp. 20-33
Author(s):  
Robi Muharsyah ◽  
Tri Wahyu Hadi ◽  
Sapto Wahyu Indratno

Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles in the form of predictive PDFs. It is known that BMA is able to improve the reliability of probabilistic forecast of short range and medium range rainfall forecast. This study aims to develop the application of BMA to calibrate seasonal forecast (long range) in order to improved quality of seasonal forecast in Indonesia. The seasonal forecast used is monthly rainfall from the output of the ensemble prediction system European Center for Medium-Range Weather Forecasts (ECMWF) system 4 model (ECS4) and it is calibrated against observational data at 26 stations of the Agency for Meteorology Climatology and Geophysics of Republic of Indonesia (BMKG) in Java Island in 1981 – 2018. BMA predictive PDFs is generated with Gamma distribution approach which is obtained based on sequential training windows (JTS) and conditionals training windows (JTC). BMA-JTS approach is done by selecting the width of the 30-month training window as the optimal training period while the BMA-JTC is carried out with a cross-validation scheme for each month. In general, Both of BMA-JTS and BMA-JTC better than RAW models. BMA-JTC calibration results are varying according to spatial and temporal, but in general the result is better in the dry season and during the El Nino phase. BMA is able to improve the distribution characteristics of the RAW model ECS4 prediction which is shown by: a smaller value of Continuous Rank Probability Score (CRPS), a larger value of the Continuous Rank Probability Skill Score (CRPSS) and more flat form of the Verification Rank Histogram (VRH) than the RAW model. BMA also increases the skill, esolution and reliability of prediction of probability Below Normal (BN) and Above Normal (AN), which is known from the increasing Brier Skill Score (BSS), and the increasing area under curve of Relative Operating Characteristics (ROC) compared to the RAW model. Furthermore, the reliability of BN and AN of BMA results also has the category of “still very useful” and “perfect” compared to RAW models that are in the “dangerous”, “not useful” and “marginally useful” categories. The reliability of BMA results with the category “still very useful” and “perfect” show that the probabilistic forecast of BN and AN events can be used in making decisions related to seasonal forecast.


2012 ◽  
Vol 27 (6) ◽  
pp. 1449-1469 ◽  
Author(s):  
Michael J. Erickson ◽  
Brian A. Colle ◽  
Joseph J. Charney

Abstract The performance of a multimodel ensemble over the northeast United States is evaluated before and after applying bias correction and Bayesian model averaging (BMA). The 13-member Stony Brook University (SBU) ensemble at 0000 UTC is combined with the 21-member National Centers for Environmental Prediction (NCEP) Short-Range Ensemble Forecast (SREF) system at 2100 UTC. The ensemble is verified using 2-m temperature and 10-m wind speed for the 2007–09 warm seasons, and for subsets of days with high ozone and high fire threat. The impacts of training period, bias-correction method, and BMA are explored for these potentially hazardous weather events using the most recent consecutive (sequential training) and most recent similar days (conditional training). BMA sensitivity to the selection of ensemble members is explored. A running mean difference between forecasts and observations using the last 14 days is better at removing temperature bias than is a cumulative distribution function (CDF) or linear regression approach. Wind speed bias is better removed by adjusting the modeled CDF to the observation. High fire threat and ozone days exhibit a larger cool bias and a greater negative wind speed bias than the warm-season average. Conditional bias correction is generally better at removing temperature and wind speed biases than sequential training. Greater probabilistic skill is found for temperature using both conditional bias correction and BMA compared to sequential bias correction with or without BMA. Conditional and sequential BMA results are similar for 10-m wind speed, although BMA typically improves probabilistic skill regardless of training.


Sign in / Sign up

Export Citation Format

Share Document