Application of Bayesian model averaging in modeling long-term wind speed distributions

2010 ◽  
Vol 35 (6) ◽  
pp. 1192-1202 ◽  
Author(s):  
Gong Li ◽  
Jing Shi
Author(s):  
Behrooz Hassani-Mahmooei ◽  
Janneke Berecki-Gisolf ◽  
Alex Collie

ABSTRACTObjectiveThe majority of standard coding systems applied to health data are hierarchical: they start with several major categories and then each category is broken into subcategories across multiple levels. Running statistical models on these datasets, may lead to serious methodological challenges such as multicollinearity between levels or selecting suboptimal models as model space grows exponentially by adding each new level. The aim of this presentation is to introduce an analytical framework that addresses this challenge. ApproachData was from individuals who claimed Transport Accident Commission (TAC) compensation for motor vehicle accidents that occurred between 2010 and 2012 in the state of Victoria, Australia and provided consent for Pharmaceutical Benefits Scheme (PBS) and Medicare Benefits Schedule (MBS) linkage (n=738). PBS and MBS records dating from 12 months prior to injury were provided by the Department of Human Services (Canberra, Australia). Pre-injury use of health service items and pharmaceuticals were considered to indicate pre-existing health conditions. Both MBS and PBS listings have a hierarchical structure. The outcome was the cost of recovery; this was also hierarchical across four level (e.g. total, medical, consultations, and specialist). A Bayesian Model Averaging model was embedded into a data mining framework which automatically created all the cost outcomes and selected the best model after penalizing for multicollinearity. The model was run across multiple prior settings to ensure robustness. Monash University’s High Performance Computing Cluster was used for running approximately 5000 final models.ResultsThe framework successfully identified variables at different levels of hierarchy as indicators of pre-existing conditions that affect cost of recovery. For example, according to the results, on average, patients who received prescription pain or mental health related medication before the injury had 31.2% higher short-term and 36.9% higher long-term total recovery cost. For every anaesthetic in the year before the accident, post-injury hospital cost increased by 24%, for patients with anxiety it increased by 35.4%. For post-injury medical costs, every prescription of drugs used in diabetes (Category A10 in ATC) increased the cost by 8%, long term medical costs were affected by both pain and mental health. ConclusionBayesian model averaging provides a robust framework for mining hierarchically linked health data helping researchers to identify potential associations which may not have been discovered using conventional technique and also preventing them from identifying associations that are sporadic but not robust.


Author(s):  
Gong Li ◽  
Jing Shi ◽  
Junyi Zhou

Wind energy has been the world’s fastest growing source of clean and renewable energy in the past decade. One of the fundamental difficulties faced by power system operators, however, is the unpredictability and variability of wind power generation, which is closely connected with the continuous fluctuations of the wind resource. Good short-term wind speed forecasting methods and techniques are urgently needed since it is important for wind energy conversion systems in terms of the relevant issues associated with the dynamic control of the wind turbine and the integration of wind energy into the power system. This paper proposes the application of Bayesian Model Averaging (BMA) method in combining the one-hour-ahead short-term wind speed forecasts from different statistical models. Based on the hourly wind speed observations from one representative site within North Dakota, four statistical models are built and the corresponding forecast time series are obtained. These data are then analyzed by using BMA method. The goodness-of-fit test results show that the BMA method is superior to its component models by providing a more reliable and accurate description of the total predictive uncertainty than the original elements, leading to a sharper probability density function for the probabilistic wind speed predictions.


2019 ◽  
Vol 33 (9) ◽  
pp. 3321-3338 ◽  
Author(s):  
Huaping Huang ◽  
Zhongmin Liang ◽  
Binquan Li ◽  
Dong Wang ◽  
Yiming Hu ◽  
...  

Econometrics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 21
Author(s):  
Marcin Błażejowski ◽  
Jacek Kwiatkowski ◽  
Paweł Kufel

In this paper, we apply Bayesian averaging of classical estimates (BACE) and Bayesian model averaging (BMA) as an automatic modeling procedures for two well-known macroeconometric models: UK demand for narrow money and long-term inflation. Empirical results verify the correctness of BACE and BMA selection and exhibit similar or better forecasting performance compared with a non-pooling approach. As a benchmark, we use Autometrics—an algorithm for automatic model selection. Our study is implemented in the easy-to-use gretl packages, which support parallel processing, automates numerical calculations, and allows for efficient computations.


2016 ◽  
Vol 11 (3) ◽  
pp. 221-235
Author(s):  
Keunhee Han ◽  
◽  
Chansik Kim ◽  
Chansoo Kim

Sign in / Sign up

Export Citation Format

Share Document