scholarly journals Chord Newton’s Method for Solving Fuzzy Nonlinear Equations

Author(s):  
Aliyu Usman Moyi

In this paper, we present a new approach for solving fuzzy nonlinear equations. Our approach requires to  compute the Jacobian matrix once throughout the iterations unlike some Newton’s-like methods which needs to compute the Jacobian matrix in every iterations. The fuzzy coefficients are presented in parametric form. Numerical results on well-known benchmarks fuzzy nonlinear equations are reported to authenticate the effectiveness and efficiency of the approach.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
M. Y. Waziri ◽  
Z. A. Majid

We present a new approach for solving dual fuzzy nonlinear equations. In this approach, we use Newton's method for initial iteration and Broyden's method for the rest of the iterations. The fuzzy coefficients are presented in parametric form. Numerical results on well-known benchmark fuzzy nonlinear equations are reported to authenticate the effectiveness and efficiency of the approach.


2012 ◽  
Vol 490-495 ◽  
pp. 1839-1843
Author(s):  
Rui Chen ◽  
Liang Fang

In this paper, we present and analyze a modified Newton-type method with oder of convergence six for solving nonlinear equations. The method is free from second derivatives. It requires three evaluations of the functions and two evaluations of derivatives in each step. Therefore the efficiency index of the presented method is 1.431 which is better than that of classical Newton’s method 1.414. Some numerical results illustrate that the proposed method is more efficient and performs better than classical Newton's method


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1507 ◽  
Author(s):  
Joanna Kołodziejczyk ◽  
Andrzej Piegat ◽  
Wojciech Sałabun

To answer the question stated in the title, we present and compare two approaches: first, a standard approach for solving dual fuzzy nonlinear systems (DFN-systems) based on Newton’s method, which uses 2D FN representation and second, the new approach, based on multidimensional fuzzy arithmetic (MF-arithmetic). We use a numerical example to explain how the proposed MF-arithmetic solves the DFN-system. To analyze results from the standard and the new approaches, we introduce an imprecision measure. We discuss the reasons why imprecision varies between both methods. The imprecision of the standard approach results (roots) is significant, which means that many possible values are excluded.


2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rami Sihwail ◽  
Obadah Said Solaiman ◽  
Khairuddin Omar ◽  
Khairul Akram Zainol Ariffin ◽  
Mohammed Alswaitti ◽  
...  

SPIN ◽  
2021 ◽  
pp. 2140004
Author(s):  
Cheng Xue ◽  
Yuchun Wu ◽  
Guoping Guo

While quantum computing provides an exponential advantage in solving the system of linear equations, there is little work to solve the system of nonlinear equations with quantum computing. We propose quantum Newton’s method (QNM) for solving [Formula: see text]-dimensional system of nonlinear equations based on Newton’s method. In QNM, we solve the system of linear equations in each iteration of Newton’s method with quantum linear system solver. We use a specific quantum data structure and [Formula: see text] tomography with sample error [Formula: see text] to implement the classical-quantum data conversion process between the two iterations of QNM, thereby constructing the whole process of QNM. The complexity of QNM in each iteration is [Formula: see text]. Through numerical simulation, we find that when [Formula: see text], QNM is still effective, so the complexity of QNM is sublinear with [Formula: see text], which provides quantum advantage compared with the optimal classical algorithm.


Author(s):  
Scott A. Burns

Abstract A monomial-based method for solving systems of algebraic nonlinear equations is presented. The method uses the arithmetic-geometric mean inequality to construct a system of monomial equations that approximates the system of nonlinear equations. This “monomial method” is closely related to Newton’s method, yet exhibits many special properties not shared by Newton’s method that enhance performance. These special properties are discussed in relation to engineering design optimization.


Sign in / Sign up

Export Citation Format

Share Document