fuzzy arithmetic
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 49)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 5 (2) ◽  
pp. 55-62
Author(s):  
Mohamed Ali A ◽  
Maanvizhi P

The arithmetic operations on fuzzy number are basic content in fuzzy mathematics. But still the operations of fuzzy arithmetic operations are not established. There are some arithmetic operations for computing fuzzy number. Certain are analytical methods and further are approximation methods. In this paper we, compare the multiplication operation on triangular fuzzy number between α-cut method and standard approximation method and give some examples.


Author(s):  
Mekonnen Redi ◽  
Mihret Dananto ◽  
Natesan Thillaigovindan

Reservoir operation studies purely based on the storage level, inflow, and release decisions during dry periods only fail to serve the optimal reservoir operation policy design because of the fact that the release decision during this period is highly dependent on wet season water conservation and flood risk management operations. Imperatively, the operation logic in the two seasons are quite different. If the two operations are not sufficiently coordinated, they may produce poor responses to the system dynamics. There are high levels of uncertainties on the model parameters, values and how they are logically operated by human or automated systems. Soft computing methods represent the system as an artificial neural network (ANN) in which the input- output relations take the form of fuzzy numbers, fuzzy arithmetic and fuzzy logic (FL). Neuro-Fuzzy System (NFS) soft computing combine the approaches of FL and ANN for single purpose reservoir operation. Thus, this study proposes a Bi-Level Neuro-Fuzzy System (BL-NFS) soft computing methodology for short and long term operation policies for a newly inaugurated irrigation project in Gidabo Watershed of Main Ethiopian Rift Valley Basin. Keywords: Bankruptcy rule, BL-NFS, Reservoir operation, Sensitivity analysis, Soft computing, Water conservation.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2196
Author(s):  
Hui Li ◽  
Junyang Cai

High computation complexity restricts the application prospects of the interval type-2 fuzzy variable (IT2-FV), despite its high degree of freedom in representing uncertainty. Thus, this paper studies the fuzzy operations for the regular symmetric triangular IT2-FVs (RSTIT2-FVs)—the simplest IT2-FVs having the greatest membership degrees of 1. Firstly, by defining the medium of an RSTIT2-FV, its membership function, credibility distribution, and inverse distribution are analytically and explicitly expressed. Secondly, an operational law for fuzzy arithmetic operations regarding mutually independent RSTIT2-FVs is proposed, which can simplify the calculations and directly output the inverse credibility of the functions. Afterwards, the operational law is applied to define the expected value operator of the IT2-FV and prove the linearity of the operator. Finally, some comparative examples are provided to verify the efficiency of the proposed operational law.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fatin Amirah Ahmad Shukri ◽  
Zaidi Isa

Mamdani fuzzy inference system has been widely used for potential risk modelling and management. The decision-making is usually provided by multiple experts in the field. The conflicting information in sources from different experts become an open issue and has attracted some researchers to investigate further. Various risk factors in a project caused difficulties for decision makers to make reliable decisions on the whole project since it involves ambiguities, vagueness, and fuzziness. The introduction of the fuzzy inference system to the evaluation of construction risk is capable in explaining its reasoning process and, hence, overcoming such problems. Risk factors under the project management risk were identified through literature sources and from the opinion of experts. It is found that the likelihood and severity of risk is somehow interlinked with the concept of fuzzy theory. For model input and output linguistics variables, the triangular membership function was selected. The methodology employs a fuzzy aggregation system in which an appropriate control action can be determined by the acquisition of expert judgment. A total of 23 rules with logical OR operator, truncation implication, and Mean of Maxima (MoM) method for defuzzification were used to create an effective fuzzy model intended for making decisions. The framework determines the relationship between input and output parameters in if-then rules or mathematical functions using an effective fuzzy arithmetic operator. The study addresses the principle issues of multiexpert opinions based on Mamdani-type decision system and the illustrative example taken from one of medium-sized project held in Malaysia’s construction industry. By comparing with other experimental results, we verify the rationality and reliability of the proposed method.


Author(s):  
Andrzej Piegat ◽  
Marcin Pluciński

AbstractIn the last few years, the number of applications of the multidimensional fuzzy arithmetic (MFA) and the multidimensional interval arithmetic is expanding. Authors of new papers about applications of MFA are often faced with comments from other researchers, especially the gradual arithmetic (GA) proponents, that the horizontal membership function (HMF) used in MFA is the same as the inverse membership function (InvMF) used in GA, and that MFA itself adds nothing new to the fuzzy arithmetic. This view leads to unfair evaluations of scientific papers about MFA applications submitted to scientific journals and to unnecessary disagreements between MFA and GA proponents. The purpose of this paper is to carefully analyze the two types of functions (HMF and InvMF) and to demonstrate their important differences. The basic and decisive difference is the dimensionality of both functions, which is illustrated by examples. It should also be added that HMF has proven its usefulness in solving difficult problems such as: systems of fuzzy equations or fuzzy differential equations, which is confirmed by numerous publications. The paper enable the reader to have a deeper understanding of the multidimensional fuzzy arithmetic.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Thomas Oberleiter ◽  
Kai Willner

AbstractThe paper presents an investigation of the accuracy of surrogate models for systems with uncertainties, where the uncertain parameters are represented by fuzzy numbers. Since the underlying fuzzy arithmetic using $$\alpha$$ α -level optimisation requires a large number of system evaluations, the use of numerically expensive systems becomes prohibitive with a higher number of fuzzy parameters. However, this problem can be overcome by employing less expensive surrogate models, where the accuracy of the surrogate depends strongly on the choice of the sampling points. In order to find a sufficiently accurate surrogate model with as few as possible sampling points, the influence of various sampling strategies on the accuracy of the fuzzy evaluation is investigated. As well suited for fuzzy systems, the newly developed Fuzzy Oriented Sampling Shift method is presented and compared with established sampling strategies. For the surrogate models radial basis functions and a Kriging model are employed. As test cases, the Branin and the Camelback function with fuzzy parameters are used, which demonstrate the varying accuracy for different sampling strategies. A more application oriented example of a finite element simulation of a deep drawing process is given in the end.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-13
Author(s):  
Hemiden Abd El-Wahed Khalifa ◽  
Pavan Kumar

The discounting problem is one of the important aspects in investment, portfolio selection, purchasing with credit, and many other financial operations. In this paper, a discounting problem using piecewise quadratic fuzzy numbers is proposed. The implementation of piecewise quadratic fuzzy numbers is described based on such operations. Fuzzy arithmetic and interval number arithmetic are used for computation. The close interval approximation of piecewise quadratic fuzzy numbers is used for solving the proposed discounting problem. This research article addresses the discounted investment for Year 1, Year 2, and Year 3. Additionally, the authors determine the cumulative discounted investment for different values of the parameter α ranging from 0 to 1. A discounting problem using piecewise quadratic fuzzy numbers is solved as a numerical example to illustrate the proposed procedure.


Author(s):  
Michał Pawłowski ◽  
Piotr Nowak

AbstractThe paper deals with a model of electricity spot prices. The proposed dynamics of electricity spot prices is driven by a mean reverting diffusion with jumps having hyperexponential distribution. The analytical formula for the forward contract’s price is derived in a crisp case. Inasmuch as the model parameters are considered to be evaluated imprecisely, their fuzzy counterparts are introduced. With usage of the fuzzy arithmetic, the analytical expression for the forward contract’s price is derived. Several numerical examples highlighting attributes of the fuzzy forward electricity prices are brought out.


Sign in / Sign up

Export Citation Format

Share Document