An affine view and illumination invariant iterative image matching approach for face recognition
Feature detection and image matching constitutes two primary tasks in photogrammetric and have multiple applications in a number of fields. One such application is face recognition. The critical nature of this application demands that image matching algorithm used in recognition of features in facial recognition to be robust and fast. The proposed method uses affine transforms to recognize the descriptors and classified by means of Bayes theorem. This paper demonstrates the suitability of the proposed image matching algorithm for use in face recognition appli-cations. Yale facial data set is used in the validation and the results are compared with SIFT (Scale Invariant Feature Transform) based face recognition approach.