Low cost speech recognition system running on Raspberry pi to support automation applications

Author(s):  
Santhoshkumar G ◽  
◽  
MNVLM Krishna
2019 ◽  
Vol 9 (2) ◽  
pp. 4066-4070 ◽  
Author(s):  
A. Mnassri ◽  
M. Bennasr ◽  
C. Adnane

The development of a real-time automatic speech recognition system (ASR) better adapted to environmental variabilities, such as noisy surroundings, speaker variations and accents has become a high priority. Robustness is required, and it can be performed at the feature extraction stage which avoids the need for other pre-processing steps. In this paper, a new robust feature extraction method for real-time ASR system is presented. A combination of Mel-frequency cepstral coefficients (MFCC) and discrete wavelet transform (DWT) is proposed. This hybrid system can conserve more extracted speech features which tend to be invariant to noise. The main idea is to extract MFCC features by denoising the obtained coefficients in the wavelet domain by using a median filter (MF). The proposed system has been implemented on Raspberry Pi 3 which is a suitable platform for real-time requirements. The experiments showed a high recognition rate (100%) in clean environment and satisfying results (ranging from 80% to 100%) in noisy environments at different signal to noise ratios (SNRs).


Author(s):  
Ademola Abdulkareem ◽  
Tobiloba E. Somefun ◽  
Oji K. Chinedum ◽  
Felix Agbetuyi

The process of speech recognition is such that a speech signal from a client or user is received by the system through a microphone, then the system analyses this signal and extracts useful information from the signal which is converted to text. This study focuses on the design and implementation of a speech recognition system integrated with internet of thing (IoT) to control electrical appliances and door with raspberry pi as a core element. To design the speech recognition system, digital signal processing (DSP) technique and hidden Markov model were fully considered for processing, extraction and high predictive accuracy of the system. The Google application programming interface (API) was used as a cloud server to store command and give the system to assess to the internet. With 150 speech samples on the system, a high level of accuracy of over 80% was obtained.


Author(s):  
Lery Sakti Ramba

The purpose of this research is to design home automation system that can be controlled using voice commands. This research was conducted by studying other research related to the topics in this research, discussing with competent parties, designing systems, testing systems, and conducting analyzes based on tests that have been done. In this research voice recognition system was designed using Deep Learning Convolutional Neural Networks (DL-CNN). The CNN model that has been designed will then be trained to recognize several kinds of voice commands. The result of this research is a speech recognition system that can be used to control several electronic devices connected to the system. The speech recognition system in this research has a 100% success rate in room conditions with background intensity of 24dB (silent), 67.67% in room conditions with 42dB background noise intensity, and only 51.67% in room conditions with background intensity noise 52dB (noisy). The percentage of the success of the speech recognition system in this research is strongly influenced by the intensity of background noise in a room. Therefore, to obtain optimal results, the speech recognition system in this research is more suitable for use in rooms with low intensity background noise.


Sign in / Sign up

Export Citation Format

Share Document