scholarly journals Comparison of acceleration methods of matrix calculations in embedded systems

2019 ◽  
Vol 6 (1) ◽  
pp. 9-17
Author(s):  
Johannes Götze

In today's algorithms for sound localization techniques, matrix calculations are ubiquitous. Therefore, this work deals with the analysis of matrix calculations and their possible realization on embedded systems. For this purpose, common acceleration technologies such as processors, GPU processing and acceleration with the help of FPGAs are compared. The results show that a graphics chip is capable to accelerate such a matrix vector multiplication compared to an implementation on a processor. Therefore a runtime of an implementation on an FPGA cannot be achieved by a GPU.

2017 ◽  
Vol 43 (4) ◽  
pp. 1-49 ◽  
Author(s):  
Salvatore Filippone ◽  
Valeria Cardellini ◽  
Davide Barbieri ◽  
Alessandro Fanfarillo

Author(s):  
Rawad Bitar ◽  
Yuxuan Xing ◽  
Yasaman Keshtkarjahromi ◽  
Venkat Dasari ◽  
Salim El Rouayheb ◽  
...  

AbstractEdge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (1) the privacy requirements of IoT applications and devices, and (2) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones.


Sign in / Sign up

Export Citation Format

Share Document