A Novel Deep Learning Classifier and Genetic Algorithm based Feature Selection for Hybrid EEG-fNIRS Brain-Computer Interface

2020 ◽  
Vol 18 (9) ◽  
pp. 125-134
Author(s):  
T.V. Padmavathy ◽  
M. Pravin Kumar ◽  
M. Shakunthala ◽  
M.N. Vimal Kumar ◽  
S. Saravanan
2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Stanisław Karkosz ◽  
Marcin Jukiewicz

AbstractObjectivesOptimization of Brain-Computer Interface by detecting the minimal number of morphological features of signal that maximize accuracy.MethodsSystem of signal processing and morphological features extractor was designed, then the genetic algorithm was used to select such characteristics that maximize the accuracy of the signal’s frequency recognition in offline Brain-Computer Interface (BCI).ResultsThe designed system provides higher accuracy results than a previously developed system that uses the same preprocessing methods, however, different results were achieved for various subjects.ConclusionsIt is possible to enhance the previously developed BCI by combining it with morphological features extraction, however, it’s performance is dependent on subject variability.


Author(s):  
Izabela Rejer

The crucial problem that has to be solved when designing an effective brain–computer interface (BCI) is: how to reduce the huge space of features extracted from raw electroencephalography (EEG) signals. One of the strategies for feature selection that is often applied by BCI researchers is based on genetic algorithms (GAs). The two types of GAs that are most commonly used in BCI research are the classic algorithm and the Culling algorithm. This paper presents both algorithms and their application for selecting features crucial for the correct classification of EEG signals recorded during imagery movements of the left and right hand. The results returned by both algorithms are compared to those returned by an algorithm with aggressive mutation and an algorithm with melting individuals, both of which have been proposed by the author of this paper. While the aggressive mutation algorithm has been published previously, the melting individuals algorithm is presented here for the first time.


Sign in / Sign up

Export Citation Format

Share Document