Concurrency control on index structures for main memory database management systems

1999 ◽  
Author(s):  
Enoch Yuet-Yeung Ng
2008 ◽  
Vol 8 (2) ◽  
pp. 129-165 ◽  
Author(s):  
G. TERRACINA ◽  
N. LEONE ◽  
V. LIO ◽  
C. PANETTA

AbstractThis article considers the problem of reasoning on massive amounts of (possibly distributed) data. Presently, existing proposals show some limitations: (i) the quantity of data that can be handled contemporarily is limited, because reasoning is generally carried out in main-memory; (ii) the interaction with external (and independent) Database Management Systems is not trivial and, in several cases, not allowed at all; and (iii) the efficiency of present implementations is still not sufficient for their utilization in complex reasoning tasks involving massive amounts of data. This article provides a contribution in this setting; it presents a new system, called DLVDB, which aims to solve these problems. Moreover, it reports the results of a thorough experimental analysis we have carried out for comparing our system with several state-of-the-art systems (both logic and databases) on some classical deductive problems; the other tested systems are LDL++, XSB, Smodels, and three top-level commercial Database Management Systems. DLVDB significantly outperforms even the commercial database systems on recursive queries.


Author(s):  
Sakil Ahmad Ansari ◽  
Jaychand Vishwakarma

Transactions are vital for database management systems (DBMSs) because they provide transparency to concurrency and failure. Concurrent execution of transactions may lead to contention for access to data, which in a multilevel secure DBMS (MLSIDBMS) may lead to insecurity. In this paper we examine security issues involved in database concurrency control for MLS/DBMSs and show how a scheduler can affect security. We introduce Data Conflict Security; (DC-Security) a property that implies a system is free of convert channels due to contention for access to data. We present a definition of DC Security based on noninterference. Two properties that constitute a necessary condition for DC-Security are introduced along with two other simpler necessary conditions. We have identified a class of schedulers we call Output-State-Equivalent for which another criterion implies DC-Security. The criterion considers separately the behavior of the scheduler in response to those inputs that cause rollback and those that do not. We characterize the security properties of several existing scheduling protocols and find many to be insecure


Sign in / Sign up

Export Citation Format

Share Document