Sliding mode control for rollover prevention of heavy vehicles based on lateral acceleration

2003 ◽  
Vol 10 (1/2) ◽  
pp. 9 ◽  
Author(s):  
A.S. Lewis ◽  
M. El-Gindy
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Duanfeng Chu ◽  
Xiao-Yun Lu ◽  
Chaozhong Wu ◽  
Zhaozheng Hu ◽  
Ming Zhong

The rollover accidents induced by severe maneuvers are very dangerous and mostly happen to vehicles with elevated center of gravity, such as heavy-duty trucks and pickup trucks. Unfortunately, it is hard for drivers of those vehicles to predict and prevent the trend of the maneuver-induced (untripped) rollover ahead of time. In this study, a lateral load transfer ratio which reflects the load distribution of left and right tires is used to indicate the rollover criticality. An antiroll controller is designed with smooth sliding mode control technique for vehicles, in which an active antiroll suspension is installed. A simplified second order roll dynamic model with additive sector bounded uncertainties is used for control design, followed by robust stability analysis. Combined with the vehicle dynamics simulation package TruckSim, MATLAB/Simulink is used for simulating experiment. The results show that the applied controller can improve the roll stability under some typical steering maneuvers, such as Fishhook and J-turn. This direct antiroll control method could be more effective for untripped rollover prevention when driver deceleration or steering is too late. It could also be extended to handle tripped rollovers.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

2009 ◽  
Vol 129 (7) ◽  
pp. 1389-1396 ◽  
Author(s):  
Misawa Kasahara ◽  
Yuki Kanai ◽  
Ryoko Shiraki ◽  
Yasuchika Mori

Sign in / Sign up

Export Citation Format

Share Document