scholarly journals Smooth Sliding Mode Control for Vehicle Rollover Prevention Using Active Antiroll Suspension

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Duanfeng Chu ◽  
Xiao-Yun Lu ◽  
Chaozhong Wu ◽  
Zhaozheng Hu ◽  
Ming Zhong

The rollover accidents induced by severe maneuvers are very dangerous and mostly happen to vehicles with elevated center of gravity, such as heavy-duty trucks and pickup trucks. Unfortunately, it is hard for drivers of those vehicles to predict and prevent the trend of the maneuver-induced (untripped) rollover ahead of time. In this study, a lateral load transfer ratio which reflects the load distribution of left and right tires is used to indicate the rollover criticality. An antiroll controller is designed with smooth sliding mode control technique for vehicles, in which an active antiroll suspension is installed. A simplified second order roll dynamic model with additive sector bounded uncertainties is used for control design, followed by robust stability analysis. Combined with the vehicle dynamics simulation package TruckSim, MATLAB/Simulink is used for simulating experiment. The results show that the applied controller can improve the roll stability under some typical steering maneuvers, such as Fishhook and J-turn. This direct antiroll control method could be more effective for untripped rollover prevention when driver deceleration or steering is too late. It could also be extended to handle tripped rollovers.

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ehsan Maani Miandoab ◽  
Aghil Yousefi-Koma ◽  
Saeed Hashemnia

Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
P. Siricharuanun ◽  
C. Pukdeboon

A second-order sliding mode control for chaotic synchronization with bounded disturbance is studied. A robust finite-time controller is designed based on super twisting algorithm which is a popular second-order sliding mode control technique. The proposed controller is designed by combining an adaptive law with super twisting algorithm. New results based on adaptive super twisting control for the synchronization of identical Qi three-dimensional four-wing chaotic system are presented. The finite-time convergence of synchronization is ensured by using Lyapunov stability theory. The simulations results show the usefulness of the developed control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Rostand Marc Douanla ◽  
Godpromesse Kenné ◽  
François Béceau Pelap ◽  
Armel Simo Fotso

A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yaobin Song ◽  
Hui Li ◽  
Xiaoling Shi

To facilitate the stabilization of nonlinear underactuated robotic systems under perturbation, a novel nonsingular fast terminal sliding mode control method is proposed. Based on the system transformation into an integrator chain, the combination of twisting-like algorithm and a nonsingular fast terminal sliding mode control technique is employed to achieve the stabilization of the studied systems, which can drive the robot states (joint positions and velocities) to the desired region and then maintain the system at the equilibrium point in finite time. The robustness of the proposed method is validated by the Lyapunov direct method. Finally, numerical simulation results further demonstrate that the proposed method has better performance on the convergent speed of the system state (robot joint positions and velocities) than state-of-the-art methods, especially for the underactuated joints.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lijun Chen ◽  
Shangfeng Du ◽  
Dan Xu ◽  
Yaofeng He ◽  
Meihui Liang

Greenhouses are closed environments that require careful climatic control, which can benefit from a system control method to cope with the high nonlinearity, complex coupling, and robustness of unknown disturbances. This paper presents a general framework for an integral sliding mode controller based on a disturbance observer combined with feedback linearization for a greenhouse temperature and humidity system. The first-principle greenhouse climate model is described as a standard affine nonlinear system. The feedback linearization control law is used to achieve a system consisting of two separate integrator channels for temperature and humidity. System compound disturbances are estimated by applying a sliding mode disturbance observer. Based on the observer, an integral sliding mode control is incorporated to enhance the robustness against uncertainties and guarantee satisfactory tracking performance even when there are unknown estimation errors. The validity and efficacy of the proposed control technique for greenhouse climate tracking were verified by comparison with simulation results obtained using the common sliding mode control method using feedback linearization without the disturbance observer. Based on this comparison, the developed controller shows a faster system response speed, higher control precision, and stronger anti-interference ability. This method can be applied to improve greenhouse climate control systems.


2014 ◽  
Vol 39 (9) ◽  
pp. 1552-1557 ◽  
Author(s):  
Xi LIU ◽  
Xiu-Xia SUN ◽  
Wen-Han DONG ◽  
Peng-Song YANG

Author(s):  
Sara Gholipour P ◽  
Sara Minagar ◽  
Javad Kazemitabar ◽  
Mobin Alizadeh

Background: A novel type of control strategy is presented for control of chaotic systems particularly a chaotic robot in joint and workspace which is the result of applying fractional calculus to dynamic sliding mode control. Objectives: To guarantee the sliding mode condition, control law is introduced based on the Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Conclusion: Also, all of chaotic robot's qualitative and quantitative characteristics have been investigated. Numerical simulations indicate viability of our control method. Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


Sign in / Sign up

Export Citation Format

Share Document