Optimal reserve inventory from output of one machine to input of two machines when inter-arrival breakdown is a random variable

Author(s):  
C.D. Nandakumar ◽  
S. Srinivasan ◽  
R. Sathiyamoorthi
GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 577-585
Author(s):  
T. Vivekanandan ◽  
S. Sachithanantham

In inventory control, suitable models for various real life systems are constructed with the objective of determining the optimal inventory level.  A new type of inventory model using the so-called change of distribution property is analyzed in this paper. There are two machines M1 and M2  in series and the output of M1 is the input of M2. Hence a reserve inventory between M1 and M2 is to be maintained. The method of obtaining the optimal size of reserve inventory, assuming cost of excess inventory, cost of shortage and when the rate of consumption of M2  is a constant, has already been attempted.  In this paper, it is assumed that the repair time of M1  is a random variable and the distribution of the same undergoes a change of distribution  after the truncation point X0 , which is taken to be a random variable.  The optimal size of the reserve inventory is obtained under the above said  assumption . Numerical illustrations are also provided.


2015 ◽  
Vol 32 (05) ◽  
pp. 1550034
Author(s):  
Hao Zhou ◽  
Ping Zhou ◽  
Yiwei Jiang

This paper addresses online scheduling of malleable parallel jobs to minimize the maximum completion time, i.e., makespan. It is assumed that the execution time of a job Jj with processing time pj is pj/k + (k-1)c if the job is assigned to k machines, where c > 0 is a constant setup time. We consider online algorithms for the scheduling problem on two identical machines. Namely, the job Jj can be processed on one machine with execution time pj or alternatively two machines in parallel with execution time pj/2+c. For the asymptotical competitive ratio, we provide an improved online algorithm with makespan no more than (3/2)C* +c/2, where C* is the optimal makespan. For the strict competitive ratio, we propose an online algorithm with competitive ratio of 1.54, which is close to the lower bound of 1.5.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document