maximum completion time
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 249
Author(s):  
Xiaohui Zhang ◽  
Yuyan Han ◽  
Grzegorz Królczyk ◽  
Marek Rydel ◽  
Rafal Stanislawski ◽  
...  

This study attempts to explore the dynamic scheduling problem from the perspective of operational research optimization. The goal is to propose a rescheduling framework for solving distributed manufacturing systems that consider random machine breakdowns as the production disruption. We establish a mathematical model that can better describe the scheduling of the distributed blocking flowshop. To realize the dynamic scheduling, we adopt an “event-driven” policy and propose a two-stage “predictive-reactive” method consisting of two steps: initial solution pre-generation and rescheduling. In the first stage, a global initial schedule is generated and considers only the deterministic problem, i.e., optimizing the maximum completion time of static distributed blocking flowshop scheduling problems. In the second stage, that is, after the breakdown occurs, the rescheduling mechanism is triggered to seek a new schedule so that both maximum completion time and the stability measure of the system can be optimized. At the breakdown node, the operations of each job are classified and a hybrid rescheduling strategy consisting of “right-shift repair + local reorder” is performed. For local reorder, we designed a discrete memetic algorithm, which embeds the differential evolution concept in its search framework. To test the effectiveness of DMA, comparisons with mainstream algorithms are conducted on instances with different scales. The statistical results show that the ARPDs obtained from DMA are improved by 88%.


Author(s):  
Ferda Can Cetinkaya ◽  
◽  
Mehmet Duman ◽  

Lot streaming is splitting a job-lot of identical items into several sublots (portions of a lot) that can be moved to the next machines upon completion so that operations on successive machines can be overlapped; hence, the overall performance of a multi-stage manufacturing environment can be improved. In this study, we consider a scheduling problem with lot streaming in a two-machine re-entrant flow shop in which each job-lot is processed first on Machine 1, then goes to Machine 2 for its second operation before it returns to the primary machine (either Machine 1 or Machine 2) for the third operation. For the two cases of the primary machine, both single-job and multi-job cases are studied independently. Optimal and near-optimal solution procedures are developed. Our objective is to minimize the makespan, which is the maximum completion time of the sublots and job lots in the single-job and multi-job cases, respectively. We prove that the single-job problem is optimally solved in polynomial-time regardless of whether the third operation is performed on Machine 1 or Machine 2. The multi-job problem is also optimally solvable in polynomial time when the third operation is performed on Machine 2. However, we prove that the multi-job problem is NP-hard when the third operation is performed on Machine 1. A global lower bound on the makespan and a simple heuristic algorithm are developed. Our computational experiment results reveal that our proposed heuristic algorithm provides optimal or near-optimal solutions in a very short time.


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
Alparslan Serhat Demir ◽  
◽  
Mine Büşra Gelen ◽  

Flowshop scheduling problems constitute a type of problem that is frequently discussed in the literature, where a wide variety of methods are developed for their solution. Although the problem used to be set as a single purpose, it became necessary to expect more than one objective to be evaluated together with increasing customer expectation and competition, after which studies started to be carried out under the title of multiobjective flowshop scheduling. With the increase in the number of workbenches and jobs, the difficulty level of the problem increases in a nonlinear way, and the solution becomes more difficult. This study proposes a new hybrid algorithm by combining genetic algorithms, which are metaheuristic methods, and the Multi-MOORA method, which is a multicriterion decision-making method, for the solution of multiobjective flowshop scheduling problems. The study evaluates and tries to optimize the performance criteria of maximum completion time, average flow time, maximum late finishing, average tardiness, and the number of late (tardy) jobs. The proposed algorithm is compared to the standard multiobjective genetic algorithm (MOGA), and the Multi-MOORA-based genetic algorithm (MBGA) shows better results.


Author(s):  
Abderrahim SAHLI ◽  
Jacques Carlier ◽  
Aziz MOUKRIM

This paper deals with the Extended Resource Constrained Project Scheduling Problem (ERCPSP) which is defined by events, nonrenewable resources and precedence constraints between pairs of events. The availability of a resource is depleted and replenished at the occurrence times of a set of events. The decision problem of ERCPSP consists of determining whether an instance has a feasible schedule or not. When there is only one nonrenewable resource, this problem is equivalent to find a feasible schedule that minimizes the number of resource units initially required. It generalizes the maximum cumulative cost problem and the two-machine maximum completion time flow-shop problem. In this paper, we consider this problem with some specific precedence constraints: parallel chains, series-parallel and interval order precedence constraints. For the  first two cases, polynomial algorithms based on a linear decomposition of chains are proposed. For the third case, a polynomial  algorithm is introduced to solve it. The priority between events is defined using the properties of interval orders.


Author(s):  
Bartłomiej Przybylski

AbstractWe consider a number of parallel-machine scheduling problems in which jobs have variable processing times. The actual processing time of each job is described by an arbitrary positive function of the position it holds on a machine. However, the function itself may additionally depend on the job or a machine this job was assigned to. Our aim is to find a schedule that minimizes the objectives of maximum completion time or the total completion time. We present a full set of polynomial solutions for the cases of jobs with no precedence constraints. We also show that the case of single-chained jobs may be not easier in general, but some polynomial results can be obtained, too.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1904
Author(s):  
Wentao Jian ◽  
Jishuang Zhu ◽  
Qingcheng Zeng

The running path of automated guided vehicles (AGVs) in the automated terminal is affected by the storage location of containers and the running time caused by congestion, deadlock and other problems during the driving process is uncertain. In this paper, considering the different AGVs congestion conditions along the path, a symmetric triangular fuzzy number is used to describe the AGVs operation time distribution and a multi-objective scheduling optimization model is established to minimize the risk of quay cranes (QCs) delay and the shortest AGVs operation time. An improved genetic algorithm was designed to verify the effectiveness of the model and algorithm by comparing the results of the AGVs scheduling and container storage optimization model based on fixed congestion coefficient under different example sizes. The results show that considering the AGVs task allocation and container storage location allocation optimization scheme with uncertain running time can reduce the delay risk of QCs, reduce the maximum completion time and have important significance for improving the loading and unloading efficiency of the automated terminal.


2021 ◽  
Vol 11 (8) ◽  
pp. 3677
Author(s):  
Yassine Ouazene ◽  
Nhan-Quy Nguyen ◽  
Farouk Yalaoui

This paper considers the problem of assigning nonpreemptive jobs on identical parallel machines to optimize workload balancing criteria. Since workload balancing is an important practical issue for services and production systems to ensure an efficient use of resources, different measures of performance have been considered in the scheduling literature to characterize this problem: maximum completion time, difference between maximum and minimum completion times and the Normalized Sum of Square for Workload Deviations. In this study, we propose a theoretical and computational analysis of these criteria. First, we prove that these criteria are equivalent in the case of identical jobs and in some particular cases. Then, we study the general version of the problem using jobs requiring different processing times and establish the theoretical relationship between the aforementioned criteria. Based on these theoretical developments, we propose new mathematical formulations to provide optimal solutions to some unsolved instances in order to enhance the latest benchmark presented in the literature.


2021 ◽  
pp. 1-11
Author(s):  
Jui-Chan Huang ◽  
Ming-Hung Shu ◽  
Bi-Min Hsu ◽  
Chien-Ming Hu ◽  
Meng-Chun Kao ◽  
...  

The remanufacturing industry is one of the important means to achieve sustainable development and resource recycling. It is of great significance to study the remanufacturing production system. This paper mainly studies the reliability of remanufacturing production system based on the uncertainty of part quality. In order to rationally arrange workshop production, minimize the maximum completion time and the cost of electricity in the production process, this study established a mixed integer linear programming model for the remanufacturing of flexible workshop based on batch processing of partial stations. In order to solve this mathematical model, the traditional genetic on the basis of the algorithm, the crossover and mutation operators of the genetic algorithm conforming to the model are designed, and finally combined with actual examples, compared with traditional batch scheduling to verify the effectiveness of the system. This research takes the remanufacturing of the Steyr engine crankshaft as the research object. Based on the uncertainty of crankshaft wear, the uncertainty of the crankshaft remanufacturing process is investigated and discussed. From the three dimensions of environment, economy and technology, from the remanufacturing process. The evaluation was carried out at the level of the process chain and the modeling process and method were verified, and the sustainability value of the worn crankshaft remanufacturing process was obtained. The remanufacturing production system experiment can show that the average sustainability values of the three batches of used crankshafts are SR1 = 0.9082, SR2 = 0.8669, SR3 = 0.7803. The system reliability analysis can provide a theoretical basis for the reliability of enterprise remanufacturing systems, and has important application and research value.


2021 ◽  
Vol 12 (3) ◽  
pp. 321-328 ◽  
Author(s):  
Imma Ribas ◽  
Ramon Companys

This paper deals with the problem of scheduling jobs in a parallel flow shop environment without buffers between machines and with sequence-dependent setup times in order to minimize the maximum completion time of jobs. The blocking constraint normally leads to an increase in the maximum completion time of jobs due to the blockage of machines, which can increase even more so when setup times are considerable. Hence, the heuristic to solve this problem must take into account these specificities in order to minimize the timeout of machines. Because the procedures designed to solve the parallel flow shop scheduling problem must deal not only with the sequencing of jobs but also with their allocation to the flow shops, 36 heuristics have been tested in this paper, of which 35 combine sequencing rules with allocation methods while the last one takes a different approach that is more related to the nature of this problem. The computational evaluation of the implemented heuristics showed good performance of the heuristic designed especially for the problem (RCP0) when the setup times are considerable. Furthermore, the evaluation has also allowed us to propose a combined heuristic that leads to good solutions in a short CPU time.


Sign in / Sign up

Export Citation Format

Share Document