scholarly journals A chemical tanker scheduling problem: Port of Houston case study

2019 ◽  
Vol 3 (1) ◽  
pp. 47
Author(s):  
Ezra Wari ◽  
Berna Eren Tokgoz ◽  
Burak Cankaya
Keyword(s):  
2015 ◽  
Vol 4 (2) ◽  
pp. 241-249
Author(s):  
Manupati V.K ◽  
Mourya Teja G ◽  
Zakir Hussain S.K ◽  
Sandeep Y ◽  
Akhil Varma A

Author(s):  
Sunimerjit Kaur ◽  
Yadwinder Singh Brar ◽  
Jaspreet Singh Dhillon

In this paper, a multi-objective hydro-thermal-wind-solar power scheduling problem is established and optimized for the Kanyakumari (Tamil Nadu, India) for the 18th of September of 2020. Four contrary constraints are contemplated for this case study (i) fuel cost and employing cost of wind and solar power system, (ii) NOx emission, (iii) SO2 emission, and (iv) CO2 emission. An advanced hybrid simplex method named as-the -constrained simplex method (ACSM) is deployed to solve the offered problem. To formulate this technique three amendments in the usual simplex method (SM) are adopted (i) -level differentiation, (ii) mutations of the worst point, and (iii) the incorporation of multi-simplexes. The fidelity of the projected practice is trailed upon two test systems. The first test system is hinged upon twenty-four-hour power scheduling of a pure thermal power system. The values of total fuel cost and emissions (NOx, SO2, CO2) are attained as 346117.20 Rs, 59325.23 kg, 207672.70 kg, and 561369.20 kg, respectively. In the second test system, two thermal generators are reintegrated with renewable energy resources (RER) based power systems (hydro, wind, and solar system) for the same power demands. The hydro, wind, and solar data are probed with the Glimn-Kirchmayer model, Weibull Distribution Density Factor, and Normal Distribution model, respectively. For this real-time hydro-thermal-wind-solar power scheduling problem the values of fuel cost and emissions (Nox, SO2, CO2) are shortened to 119589.00 Rs, 24262.24 kg, 71753.80 kg, and 196748.20 kg, respectively for the specified interval. The outturns using ACSM are contrasted with the SM and evolutionary method (EM). The values of the operating cost of solar system, wind system, total system transmission losses, and computational time of test system-2 with ACSM, SM, and EM are evaluated as 620497.40 Rs, 1398340.00 Rs, 476.6948 MW & 15.6 seconds; 620559.45 Rs, 1398479.80 Rs, 476.7425 MW & 16.8 seconds; and 621117.68 Rs, 1399737.80 Rs, 477.1715 MW and 17.3 seconds, respectively. The solutions portray the sovereignty of ACSM over the other two methods in the entire process.


2019 ◽  
Vol 3 (1) ◽  
pp. 47
Author(s):  
Burak Cankaya ◽  
Ezra Wari ◽  
Berna Eren Tokgoz
Keyword(s):  

Author(s):  
José Itzcoatl Gomar-Madriz ◽  
Salvador Hernandez-González ◽  
Jaime Navarrete-Damián

The Hoist Scheduling Problem is combinatory, so tools such as mathematical programming need to be used to get the sequence of movements, respecting the constraints of the process by minimizing the cycle time. A sequence in which the order of movements follows the order of the process is known as the basic diagram. These schedules do not have any clearance for the hoist to make any other movements, resulting in a loss in productivity. This chapter takes the production line of a Mexican factory as a case study, analyzing the hoist's travelling speed to find sequences of movements that could improve productivity. The results of the study indicate that the cycle time has a nonlinear behavior in respect of the hoist's travelling speed and it was determined that there are travelling speeds for which sequences are obtained with enough clearance to make other movements and keep other carriers on the line. A suitable speed was estimated in the case.


Sign in / Sign up

Export Citation Format

Share Document