Projective synchronisation of fractional-order memristive systems with different structures based on active control method

2013 ◽  
Vol 14 (2) ◽  
pp. 102 ◽  
Author(s):  
Shijian Cang ◽  
Zengqiang Chen ◽  
Zenghui Wang ◽  
Hongyan Jia
2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Sachin Bhalekar ◽  
Varsha Daftardar-Gejji

Antisynchronization phenomena are studied in nonidentical fractional-order differential systems. The characteristic feature of antisynchronization is that the sum of relevant state-variables vanishes for sufficiently large value of time variable. Active control method is used first time in the literature to achieve antisynchronization between fractional-order Lorenz and Financial systems, Financial and Chen systems, and Lü and Financial systems. The stability analysis is carried out using classical results. We also provide numerical results to verify the effectiveness of the proposed theory.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Ajit K. Singh ◽  
Vijay K. Yadav ◽  
S. Das

AbstractIn this article, the active control method and the backstepping method are used during the synchronization of fractional order chaotic systems. The salient feature of the article is the analysis of time of synchronization between fractional order Chen and Qi systems using both the methods. Numerical simulation and graphical results clearly exhibit that backstepping approach is better than active control method for synchronization of the considered pair of systems, as it takes less time to synchronize while using the first one compare to second one.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zahra Yaghoubi ◽  
Hassan Zarabadipour

Synchronization of fractional-order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this paper, a drive-response synchronization method is studied for “phase and antiphase synchronization” of a class of fractional-order chaotic systems via active control method, using the 3-cell and Volta systems as an example. These examples are used to illustrate the effectiveness of the synchronization method.


2013 ◽  
Vol 76 (2) ◽  
pp. 905-914 ◽  
Author(s):  
M. Srivastava ◽  
S. P. Ansari ◽  
S. K. Agrawal ◽  
S. Das ◽  
A. Y. T. Leung

Sign in / Sign up

Export Citation Format

Share Document