Nonlinear Engineering
Latest Publications


TOTAL DOCUMENTS

343
(FIVE YEARS 149)

H-INDEX

12
(FIVE YEARS 7)

Published By Walter De Gruyter Gmbh

2192-8029, 2192-8010

2021 ◽  
Vol 10 (1) ◽  
pp. 231-239
Author(s):  
Kashif Ali Abro ◽  
Abdon Atangana ◽  
Ali Raza Khoso

Abstract The complex structures usually depend upon unconstrained and constrained simply supported beams because the passive damping is applied to control vibrations or dissipate acoustic energies involved in aerospace and automotive industries. This manuscript aims to present an analytic study of a simply supported beam based on the modern fractional approaches namely Caputo-Fabrizio and Atanagna-Baleanu fractional differential operators. The governing equation of motion is fractionalized for knowing the vivid effects of principal parametric resonances. The powerful techniques of Laplace and Fourier sine transforms are invoked for investigating the exact solutions with fractional and non-fractional approaches. The analytic solutions are presented in terms of elementary as well as special functions and depicted for graphical illustration based on embedded parameters. Finally, effects of the amplitude of vibrations and the natural frequency are discussed based on the sensitivities of dynamic characteristics of simply supported beam.


2021 ◽  
Vol 10 (1) ◽  
pp. 414-427
Author(s):  
Mohammed K. A. Kaabar ◽  
Vida Kalvandi ◽  
Nasrin Eghbali ◽  
Mohammad Esmael Samei ◽  
Zailan Siri ◽  
...  

Abstract An interesting quadratic fractional integral equation is investigated in this work via a generalized Mittag-Leffler (ML) function. The generalized ML–Hyers–Ulam stability is established in this investigation. We study both of the Hyers–Ulam stability (HUS) and ML–Hyers–Ulam–Rassias stability (ML-HURS) in detail for our proposed differential equation (DEq). Our proposed technique unifies various differential equations’ classes. Therefore, this technique can be further applied in future research works with applications to science and engineering.


2021 ◽  
Vol 10 (1) ◽  
pp. 343-362
Author(s):  
Suresha Suraiah Palaiah ◽  
Hussain Basha ◽  
Gudala Janardhana Reddy

Abstract Contemporary investigation studies the silent features of the dissipative free convection couple stress fluid flow over a cylinder under the action of magnetic field, thermal radiation and porous medium with chemical reaction effect. Present two-dimensional viscous incompressible physical model is designed based on the considered flow geometry. Present physical problem gives the highly complicated nonlinear coupled partial differential equations (PDE's) which are not amenable to any of the known techniques. Thus, unconditionally stable, most accurate and speed converging with flexible finite difference implicit technique is utilized to simplify the dimensionless flow field equations. It is apparent from the current results that; the velocity profiles are diminished with enhancing values of magnetic field. Temperature profile increases with enhancing values of thermal radiation parameter. Velocity contours deviates away from the wall with enhancing magnetic parameter. Also, the effects of magnetic field, porous medium, thermal radiation, chemical reaction, buoyancy ratio parameter and Eckert number on couple stress flow velocity, temperature, and concentration profiles are studied. However, the present study has good number of applications in the various fields of engineering such as; polymer processing, solidification of liquid crystals, colloidal solutions, synovial joints, geophysics, chemical engineering, astrophysics and nuclear reactors etc. Finally, the current solutions are validated with the available results in the literature review and found to be in good agreement.


2021 ◽  
Vol 10 (1) ◽  
pp. 477-487
Author(s):  
Dinkar Sharma ◽  
Ramandeep Kaur ◽  
Munish Sandhir ◽  
Honey Sharma

Abstract This study represents a numerical analysis of stress and strain in the functionally graded material (FGM) hollow cylinder subjected to two different temperature profiles and inhomogeneity parameter. The thermo-mechanical properties of a cylinder are assumed to vary continuously as power law function along the radial coordinate of a cylinder. Based on equilibrium equation, Hooke's law, stress-strain relationship in the cylinders, and other theories from mechanics second order differential equation is obtained that represents the thermoelastic field in hollow FGM cylinder. To find a numerical solution of governing differential equation, the finite element method (FEM) with standard discretization approach is used. The analysis of numerical results reveals that stress and strain in the FGM cylinder are significantly depend upon variation made in temperature profile and inhomogeneity parameter n. The results show good agreement with results available in the literature. It is shown that thermoelastic characteristics of the FGM cylinder are controlled by controlling the value of the above discussed parameters. Moreover, these results are very useful in various fields of engineering and science as FGM cylinders have a wide range of applications in these fields.


2021 ◽  
Vol 10 (1) ◽  
pp. 428-435
Author(s):  
Yimin Chen ◽  
Wenzhuo Zhang ◽  
Lu Dong ◽  
Korhan Cengiz ◽  
Amit Sharma

Abstract Advancement in engineering provides various improvement in quality life while taking consideration of important factors for safety and environment. The use of mower food maintenance of land it is very common across several parts of the world with some frequent noise generated through its operation. This article is an attempt to study the noise and frequency generated through the vibrations of mower blade. In this study, an integrated design for designing, testing and developing mower blade that generates less noise is presented. For designing efficient blade that produces less noise, we have implemented various engineering approaches such as rapid product design, process of re-engineering and reverse engineering. The simulation of the designed blade is carried out through CAD software where the design prototype is analysed for its performance. The outcomes of the prototype are tested through simulation and its performance is compared for the determination of success of proposed design at different variations in frequency level. It is observed through the experimentation that the noise and vibration differences are generated through load carrying vehicles, mowers with riding capacity and simple mowers. From the analysis, mower with riding capacity is observed as safest among all other types of machines.


2021 ◽  
Vol 10 (1) ◽  
pp. 374-384
Author(s):  
Mustafa Inc ◽  
E. A. Az-Zo’bi ◽  
Adil Jhangeer ◽  
Hadi Rezazadeh ◽  
Muhammad Nasir Ali ◽  
...  

Abstract In this article, (2+1)-dimensional Ito equation that models waves motion on shallow water surfaces is analyzed for exact analytic solutions. Two reliable techniques involving the simplest equation and modified simplest equation algorithms are utilized to find exact solutions of the considered equation involving bright solitons, singular periodic solitons, and singular bright solitons. These solutions are also described graphically while taking suitable values of free parameters. The applied algorithms are effective and convenient in handling the solution process for Ito equation that appears in many phenomena.


2021 ◽  
Vol 10 (1) ◽  
pp. 91-108
Author(s):  
Aziz Ullah Awan ◽  
Attia Sharif ◽  
Kashif Ali Abro ◽  
Muhammad Ozair ◽  
Takasar Hussain

Abstract The square-root dynamics of smoking model with cravings to smoke, in which square root of potential smokers and smokers is the interaction term, has been studied. We categorized net population in four different chambers: non-smokers/potential smokers, smokers/infected people, non-permanent smokers/temporary quitters and the permanent quitters. By dynamical systems approach, we analyzed our model. Moreover, for proving the unique equilibrium point to be globally stable, we took help of graph theoretic approach. The sensitivity analysis of the model is performed through the diseased classes effectively to design reliable, robust and stable control strategies. The model is designed like optimal control trouble to find out importance of various control actions on our system that are insisted by the sensitivity analysis. We have applied two controls, which are the awareness campaign through the media transmission to control the potential smokers and temporary quit smokers to become smokers and the treatment of smokers. Analytical and numerical methods are utilized for ensuring presence of these two control actions.


2021 ◽  
Vol 10 (1) ◽  
pp. 39-45
Author(s):  
S. Kumbinarasaiah ◽  
K.R. Raghunatha

Abstract In this article, we present the Laguerre wavelet exact Parseval frame method (LWPM) for the two-dimensional flow of a rotating micropolar fluid in a porous channel with huge mass transfer. This flow is governed by highly nonlinear coupled partial differential equations (PDEs) are reduced to the nonlinear coupled ordinary differential equations (ODEs) using Berman's similarity transformation before being solved numerically by a Laguerre wavelet exact Parseval frame method. We also compared this work with the other methods in the literature available. Moreover, in the graphs of the velocity distribution and microrotation, we shown that the proposed scheme's solutions are more accurate and applicable than other existing methods in the literature. Numerical results explaining the effects of various physical parameters connected with the flow are discussed.


2021 ◽  
Vol 10 (1) ◽  
pp. 272-281
Author(s):  
Hülya Durur ◽  
Asıf Yokuş ◽  
Kashif Ali Abro

Abstract Computational and travelling wave solutions provide significant improvements in accuracy and characterize novelty of imposed techniques. In this context, computational and travelling wave solutions have been traced out for Tzitzéica and Dodd-Bullough-Mikhailov equations by means of (1/G′)-expansion method. The different types of solutions have constructed for Tzitzéica and Dodd-Bullough-Mikhailov equations in hyperbolic form. Moreover, solution function of Tzitzéica and Dodd-Bullough-Mikhailov equations has been derived in the format of logarithmic nature. Since both equations contain exponential terms so the solutions produced are expected to be in logarithmic form. Traveling wave solutions are presented in different formats from the solutions introduced in the literature. The reliability, effectiveness and applicability of the (1/G′)-expansion method produced hyperbolic type solutions. For the sake of physical significance, contour graphs, two dimensional and three dimensional graphs have been depicted for stationary wave. Such graphical illustration has been contrasted for stationary wave verses traveling wave solutions. Our graphical comparative analysis suggests that imposed method is reliable and powerful method for obtaining exact solutions of nonlinear evolution equations.


2021 ◽  
Vol 10 (1) ◽  
pp. 177-186
Author(s):  
Syed Tauseef Saeed ◽  
Muhammad Bilal Riaz ◽  
Dumitru Baleanu

Abstract Convective flow is a self-sustained flow with the effect of the temperature gradient. The density is nonuniform due to the variation of temperature. The effect of the magnetic flux plays a major role in convective flow. The process of heat transfer is accompanied by mass transfer process; for instance condensation, evaporation and chemical process. Due to the applications of the heat and mass transfer combined effects in different field, the main aim of this paper is to do comprehensive analysis of heat and mass transfer of MHD unsteady Oldroyd-B fluid in the presence of ramped conditions. The new governing equations of MHD Oldroyd-B fluid have been fractionalized by means of singular and non-singular differentiable operators. In order to have an accurate physical significance of imposed conditions on the geometry of Oldroyd-B fluid, the ramped temperature, concentration and velocity are considered. The fractional solutions of temperature, concentration and velocity have been investigated by means of integral transform and inversion algorithm. The influence of physical parameters and flow is analyzed graphically via computational software (MATHCAD-15). The velocity profile decreases by increasing the Prandtl number. The existence of a Prandtl number may reflect the control of the thickness and enlargement of the thermal effect. The classical calculus is assumed as the instant rate of change of the output when the input level changes. Therefore it is not able to include the previous state of the system called the memory effect. Due to this reason, we applied the modern definition of fractional derivatives. Obtained generalized results are very important due to their vast applications in the field of engineering and applied sciences.


Sign in / Sign up

Export Citation Format

Share Document